X3D Graphics Support for Computer Aided Design (CAD)

"In Theory: theory and practice are the same.

In Practice: they're not."

Yogi Berra

Don Brutzman

Naval Postgraduate School

brutzman@nps.edu

Contents

Chapter Overview and Concepts

CAD Working Group

- Phase 1: Scene Structure
- Phase 2: Parametric History and B-REPS
- X3D Compressed Binary Encoding (CBE)
- X3D CAD Concepts: common fields for X3D nodes

X3D Nodes and Examples

Applications, Next Steps, Additional Resources

Chapter Summary and Suggested Exercises

References

Chapter Overview

Overview

CAD models tend to have complex geometry and metadata, captured in proprietary formats

Long-running efforts to consistently expose heavyweight CAD models as lightweight X3D

- CAD structure and OrthoViewpoint (X3D v3.1)
- Boundary Representations (B-REPS) for geometry
- Parametric History to unlock CAD models as X3D

Various open-source tools, codebases available

- Limited by single X3D browser, diverse tool chain
- Important work continues

CAD Working Group History, first phase 2003-2004:

scene structure

History: first phase 2003-2004

Established CAD X3D Working Group

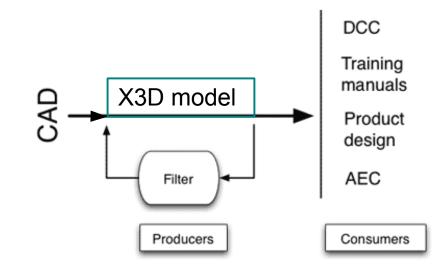
Closed to members, considered patented work

Determined common use cases:

- Digital content creation (DCC) creates interoperable
 X3D web-based models from CAD diagrams
- Architecture Engineering Construction (AEC)
- Interactive Engineering Technical Manual (IETM)

Defined X3D basic scene-graph organizational structure for containing CAD models

Face, Part, Assembly, Layer



CAD Distillation Filter (CDF) concept

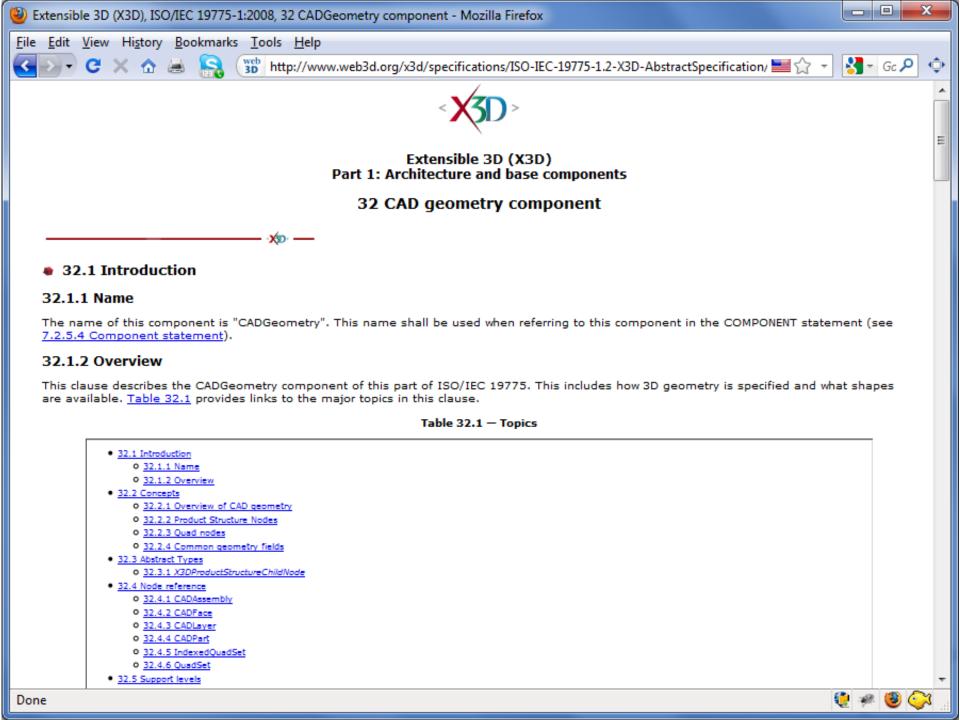
CAD Distillation Filter (CDF) is process that provides successive filtering to reduce and refine a single X3D model

- Each filter can be simple and do one thing well
- X3D in, X3D out. Not a separate format.
- Applicable to wide range of input scenes

CAD Geometry Component

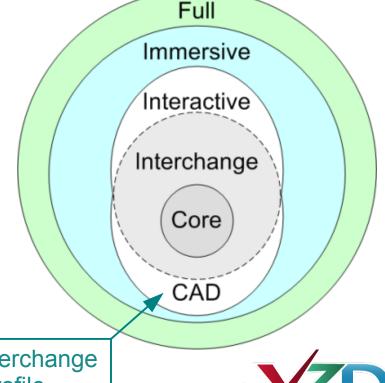
Levels 1, 2 defined as part of X3D v3.1

Level 1. Additional geometry support:


IndexedQuadSet, QuadSet

Level 2. Structure, viewing

- X3DProductStructureChildNode nodes:
 CADAssembly, CADFace, CADLayer, CADPart
- OrthoViewpoint, ViewpointGroup



Profiles cover common use cases

Profiles are a collection of components matching common levels of complexity

Profiles are X3D subsets

- Collection of X3D nodes for for author's palette
- Interchange suitable for simple geometry conversion
- <u>Interactive</u> adds simple user interactivity (clicking etc.)
- Immersive matches VRML97, plus a bit more
- Full profile includes all nodes

CAD Interchange Profile

Also defined full set of nodes needed for CAD

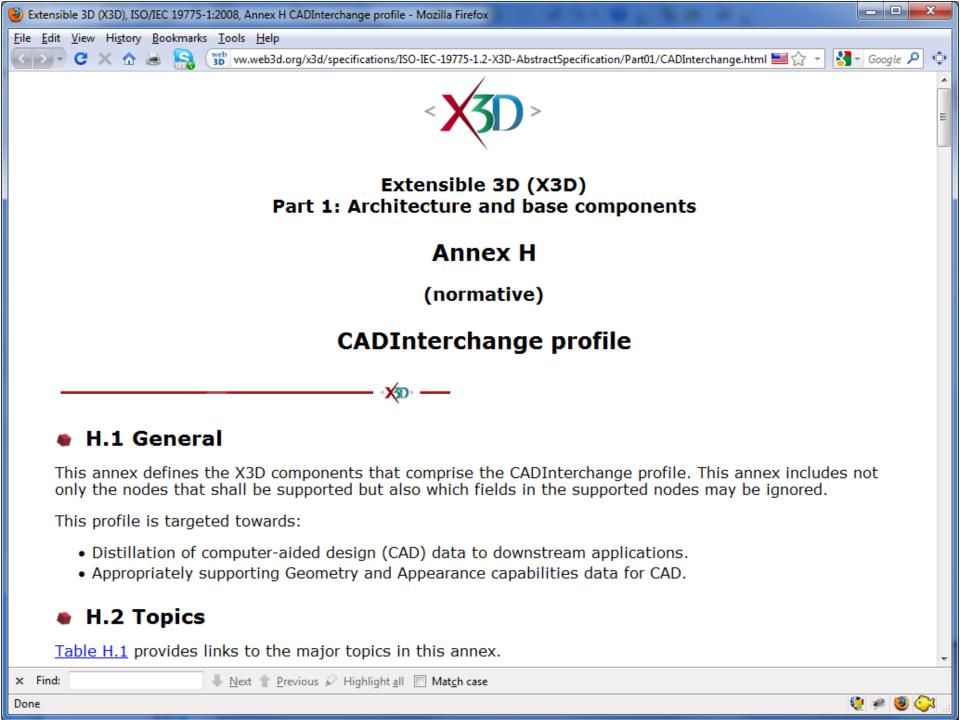

- Allows lightweight support by tools and browsers
- Improve scene portability and interoperability

Table H.2 — Components and levels

Component	Level	Reference
Core	1	7.5 Support levels
Networking	1	9.5 Support levels
Grouping	1	10.5 Support levels
Rendering	4	11.5 Support levels
Shape	2	12.5 Support levels
Lighting	1	17.5 Support levels
Texturing	2	18.5 Support levels
Navigation	2	23.4 Support levels
Shaders	1	31.5 Support levels
CADGeometry	2	32.5 Support levels

Support for CAD filters, decimation

Xj3D supports multiple CAD filter capabilities for geometry simplification and profile reduction

Can invoke via command line or build script

X3D-Edit authoring tool exposes these filters via user interface

Other tools also exist, may need to be adapted for X3D use. Example:

Meshlab http://meshlab.sourceforge.net

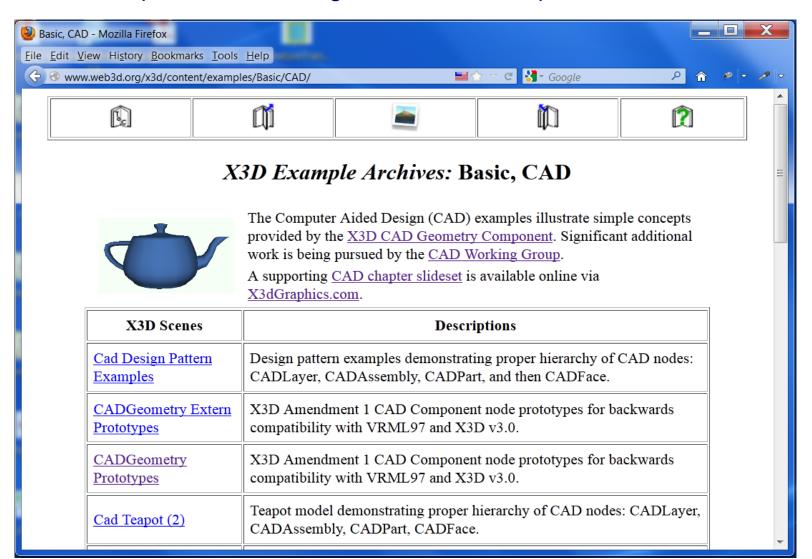
X3D Convers	ions: Xj3D CAD Filter		×
Scene results			
3.1 ▼	X3D version	☐ Triangle count	
FATAL ▼	Logging level	Embed prototype content	
SMALLEST -	Binary compression method	Set minimum profile	
Identity filter	(no internal scene-graph cl	hanges)	
CAD filters of	f interest		
Filter methods	ş—————————————————————————————————————		
1.0	Absolute scale factor	Add bounding boxes	☐ IndexedFaceSet to IndexedTriangleSet
0.001	Floating-point quantization	☐ Center	☐ IndexedFaceSet to TriangleSet
		Combine shapes	☐ Index
		DEF-USE ImageTexture	☐ Modify viewpoint
		$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Shorten DEF
		Generate normal values	☐ Triangulation
Time-consumi	ng methods		
Re-index	Debug		
Reset to defaul	ts		
			Cancel Continue

VRML97 and X3D v3.0 support

CAD nodes were not included in VRML97

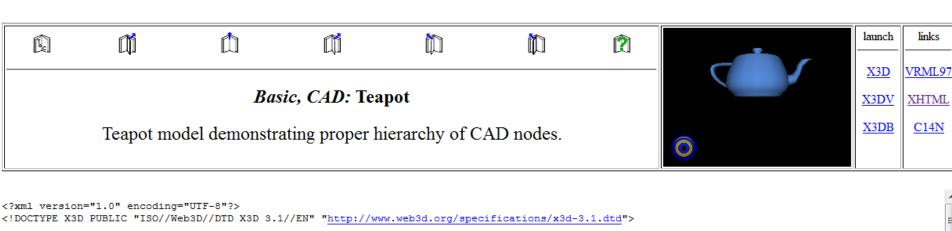
First approved as part of X3D version 3.1

Nevertheless support for CADAssembly, CADFace, CADLayer, CADPart is possible

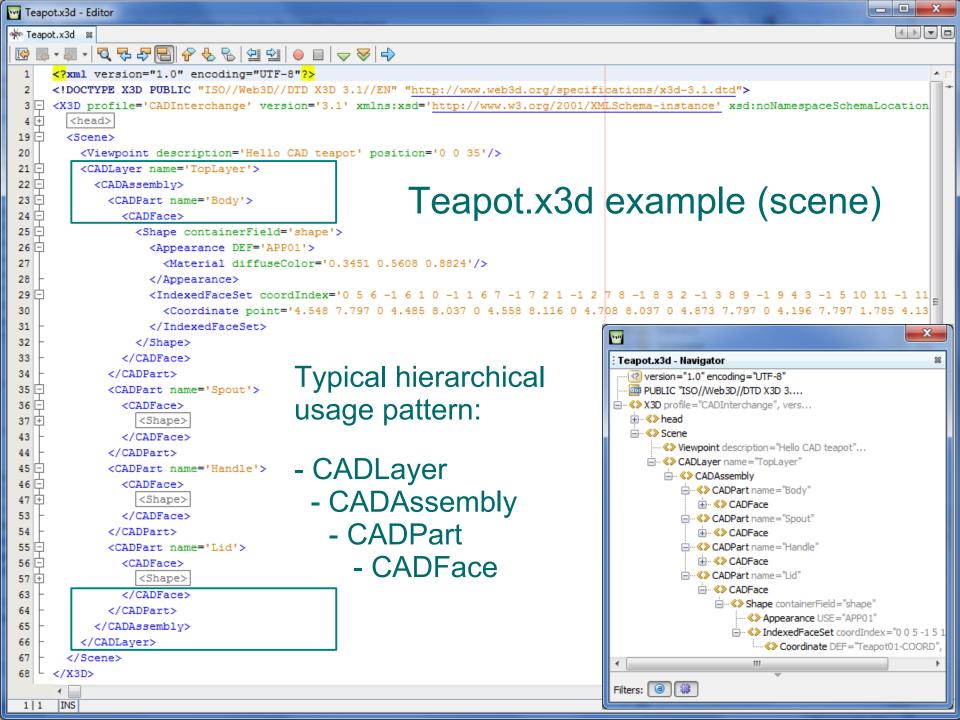

- Prototypes written that implement these nodes
- This is possible because they are structural and can be repeated using the VRML97 vocabulary
- Prototype support automatically included in X3dToVrml97.xslt conversion stylesheet, templates CADGeometryPrototypes, CADGeometryExternPrototypes

QuadSet, IndexedQuadSet nodes also provided

Quadrilaterals converted to IndexedFaceSet


CAD Examples, X3D Basic Archive

http://www.web3d.org/x3d/content/examples/Basic/CAD


Teapot.x3d example (header)

http://www.web3d.org/x3d/content/examples/Basic/CAD/Teapot.x3d


```
<X3D profile='CADInterchange' version='3.1' xmlns:xsd='http://www.w3.org/2001/XMLSchema-instance' xsd:noNamespaceSchemaLocation=' http://www.web3d.org/specifications/x3d-3.1.xsd'>
   <head>
       <component level='2' name='CADGeometry'/>
       <meta name='title' content='Teapot.x3d'/>
       <meta name='description' content='Teapot model demonstrating proper hierarchy of CAD nodes.'/>
       <meta name='creator' content='Alan Hudson'/>
       <meta name='translator' content=' Xj3D, http://www.xj3d.org '/>
       <meta name='created' content='1 December 2005'/>
       <meta name='modified' content='10 March 2009'/>
       <meta name='reference' content=' http://www.web3d.org/x3d/specifications/ISO-IEC-19775-Amendment1-X3DAbstractSpecification/Part01/components/CADGeometry.html '/>
       <meta name='reference' content='TeapotOriginal.x3dv'/>
       <meta name='subject' content='X3D CAD CADInterchange profile'/>
       <meta name='identifier' content=' http://www.web3d.org/x3d/content/examples/Basic/CAD/Teapot.x3d '/>
       <meta name='generator' content='X3D-Edit 3.2, https://savage.nps.edu/X3D-Edit'/>
       <meta name='license' content='../license.html'/>
   </head>
   <!--
                                                                     Index for DEF nodes: APP01, Teapot01-COORD
```

Index for Viewpoint image: Viewpoint 1

Also available: NURBS nodes

Non-uniform Rational B-Spline (NURBS) nodes define parametric surfaces

- Precise, accurate, terse, scalable representations since mathematically defined
- Can be tessellated as high-fidelity polygonal surface at a resolution appropriate to viewer distance
- Difficult to author without special tools
- X3D NURBS nodes include: Contour2D, ContourPolyline2D, CoordinateDouble, NurbsCurve, NurbsCurve2D, NurbsOrientationInterpolator, NurbsPatchSurface, NurbsPositionInterpolator, NurbsSet, NurbsSurfaceInterpolator, NurbsSweptSurface, NurbsSwungSurface, NurbsTextureCoordinate, NurbsTrimmedSurface

CAD Working Group History, second phase 2008-2011:

Parametric History conversions and Boundary Representations (B-REPS)

Work in progress

History: second phase 2008-2010

X3D CAD Working Group evaluated Boundary Representations (B-REPS) for possible addition as X3D CAD Component level 3

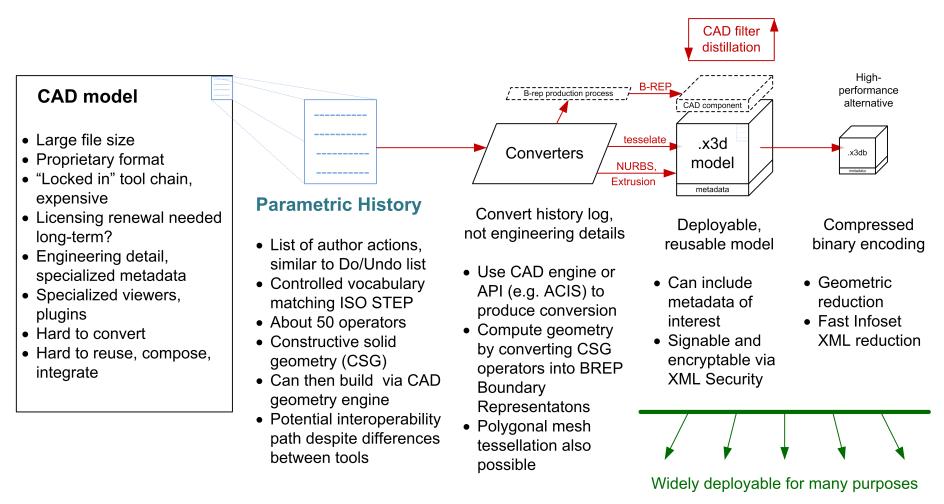
- Draft specification available, but accessible to Web3D members only
- Safe haven: IPR contributions encouraged, protected during working group review
- Example implementations by Xj3D, Collaviz
- Need to expose examples, tests incomplete

CAD Interoperability

- Boundary Representations (B-REPS) nodes
 - Draft CAD specification update held by Yumetech
- ISO TC184 technical evaluation details show X3D fully competitive with other approaches
 - (Collada, U3D, JTOpen, some dropped out)
 - Close second-place finish, score 82% of 360 points
- Good prospect of unlocking many thousands (millions?) of existing engineering models using Parametric History authoring log
 - Dr. Soonhung Han, KAIST Icad Laboratory

CAD Parametric History approach

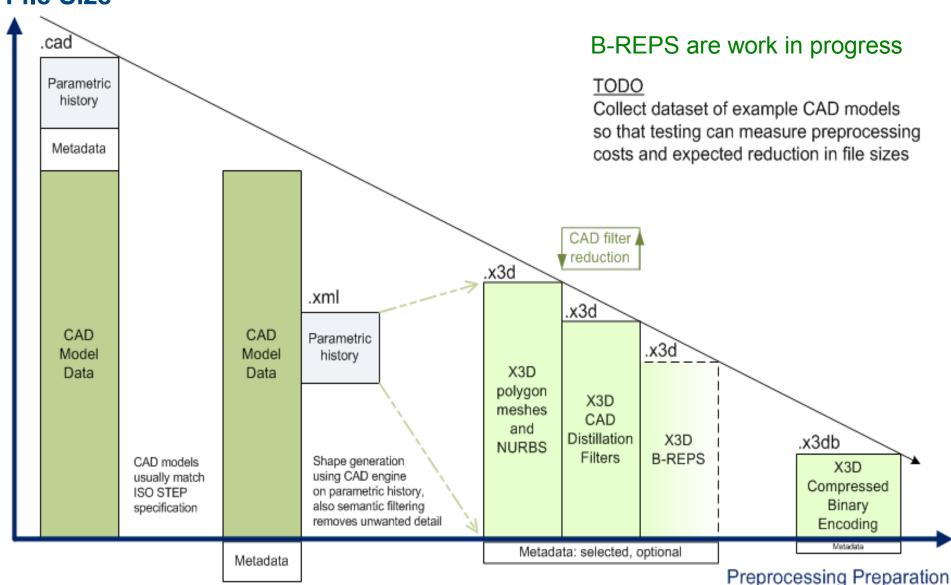
Numerous different CAD formats exist


- No single dominant format
- Formats typically obscure, engineering oriented
- Companies carefully "protect" their customers

Common denominators nevertheless exist

- History file of author steps thus consistently applies fifty-term vocabulary consisting of B-REPS and constructive solid geometry (CSG) operations
- History log can be converted into common syntax, then reconstruct original geometry
- Current KAIST work targeted to produce X3D

X3D conversion of CAD models


Note: might even embed the Parametric History file as metadata in .x3d model, in order to enable reasonably accurate round-trip regeneration of the original CAD model despite data lossiness.

CAD Parametric History details

- Many CAD models might be saved with parametric history, but some might not (as authoring choice)
- CAD Model Data might include both geometry meshes and procedurally defined surfaces
- Parametric History provides a redundant record of how the geometric CAD model was created
- Parametric History can be used to independently produce a similar or equivalent set of geometry meshes and procedural surfaces
- This generated result effectively match the shapes captured in the CAD Model Data
- This is a more efficient approach than trying to translate every different CAD format into X3D

CAD Model Data Reduction

File Size

Boundary Representations B-REPs

Boundary representations (B-REPS) are used in solid modeling and computer-aided design for representing shapes

 A solid is represented as a collection of connected surface elements, the boundary between solid and non-solid space

Two parts make up a B-REP:

- Topology: faces, edges and vertices
- Geometry: surfaces, curves and points

Goals for use of B-REPS in X3D

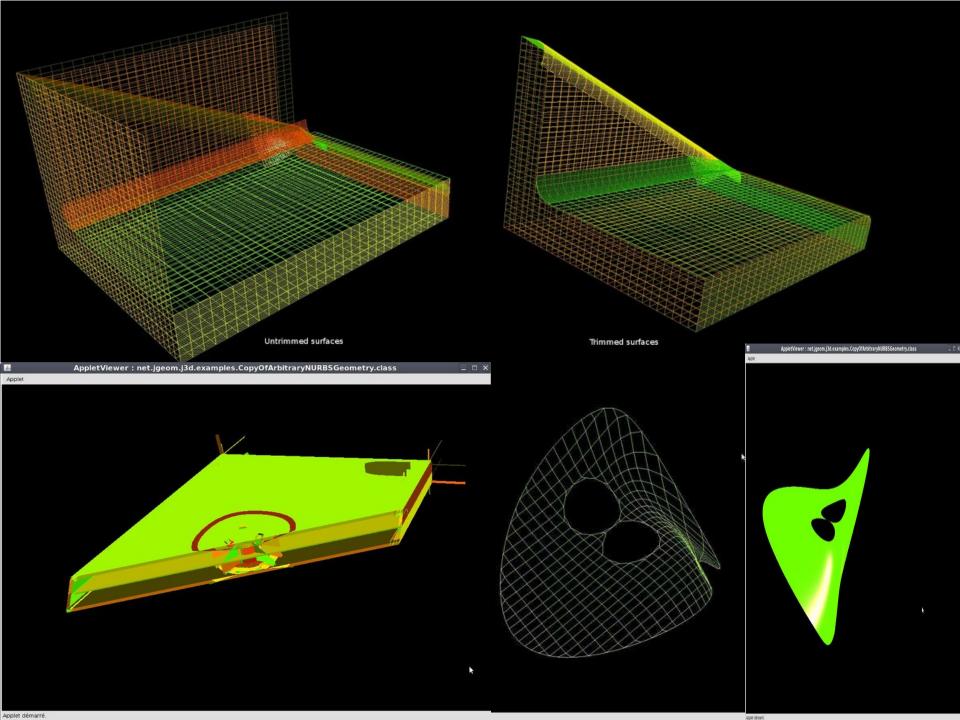
Provide light-weight versions of CAD models

 Engineering data fidelity and metadata detail can often be relaxed

Use in various Web-accessible applications such as training, maintenance, simulation and virtual worlds

- Smaller size means shorter download times and faster rendering; original models are impractical
- X3D can add animation of parts, user interactivity, and composition of models

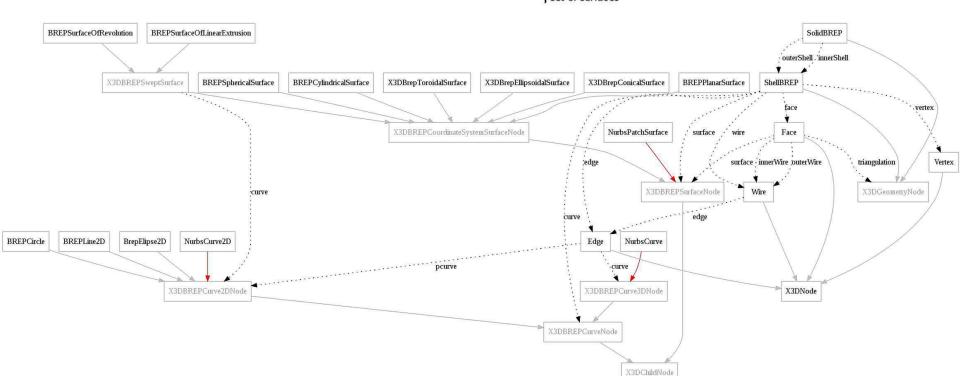
Boundary representation (B-REP) nodes


Topological nodes

 Edge, EdgeReference, Face, Wire, Vertex, PointBREP, WireBREP, ShellBREP, SolidBREP

Geometrical nodes

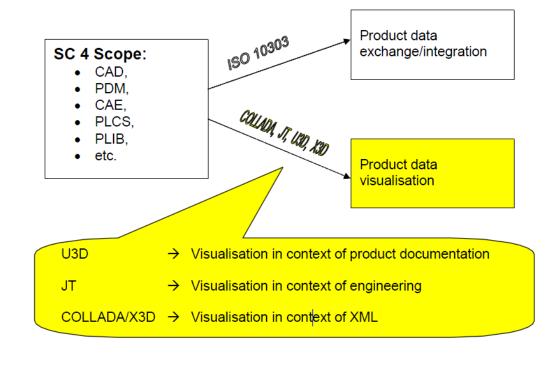
 BREPPlanarSurface, BREPSphericalSurface, BREPCylindricalSurface, BREPToroidalSurface, BREPEllipsoidalSurface, BREPConicalSurface, BREPSurfaceOfLinearExtrusion, BREPSurfaceOfRevolution, BREPCircle2D, BREPLine2D, BREPEllipse2D



Proposed B-REP architectural design seems complex...

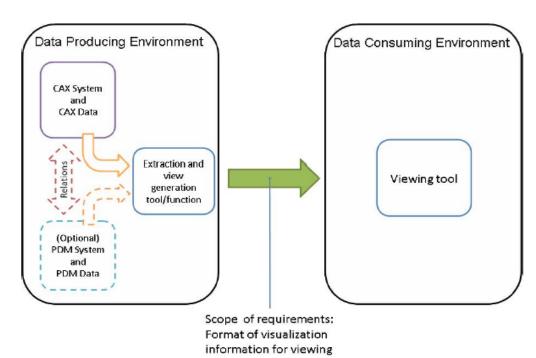
Indexing scheme

Inheritance scheme


```
ShellBREP
 set of vertices
 set of curves
   curvel
   curve2
  curveN
 set of edges
                      Indexes corresponding to
  edge1
                      positions in the ShellBREP curves array
   set of pcurve
   edge2
  edgeN
 set of wires
 set of faces
 set of surfaces
```

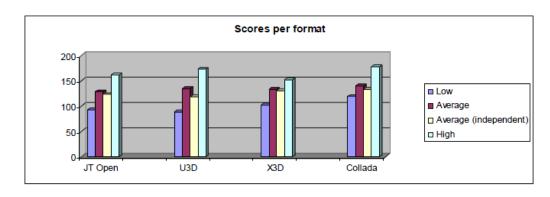

ISO SC4 Visualization Assessment

- ISO Standards Committee SC4 assessed multiple candidate visualization formats that met industrydefined requirements for product data visualization
- Published April 2009


web 3

ISO SC4 assessment scope: product visualization output

Committee didn't assess round-trip conversion since requirements are very different


ISO SC4 assessment results

X3D scored close second of 5 entries overall

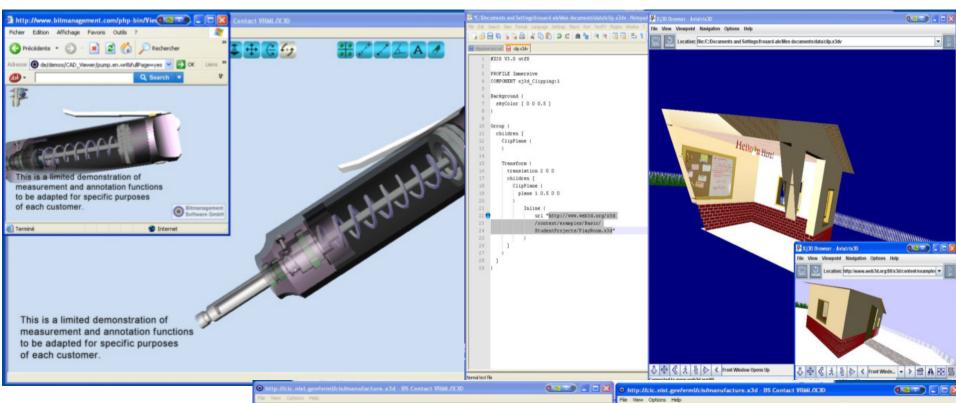
Functional coverage assessment 82% of 360 points

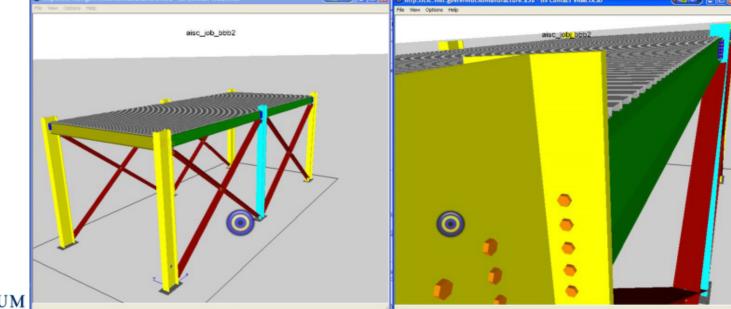
Report recommendations:

- It is recommended to accept the format candidates COLADA, JT, U3D and X3D as finally assessed to fulfill the requirements for SC 4 visualisation formats.
- This format is complementary to the standards series ISO 10303 "STEP" concerning the visualization data exchange. It is not recommended to use this format for CAx data exchange or product data exchange.

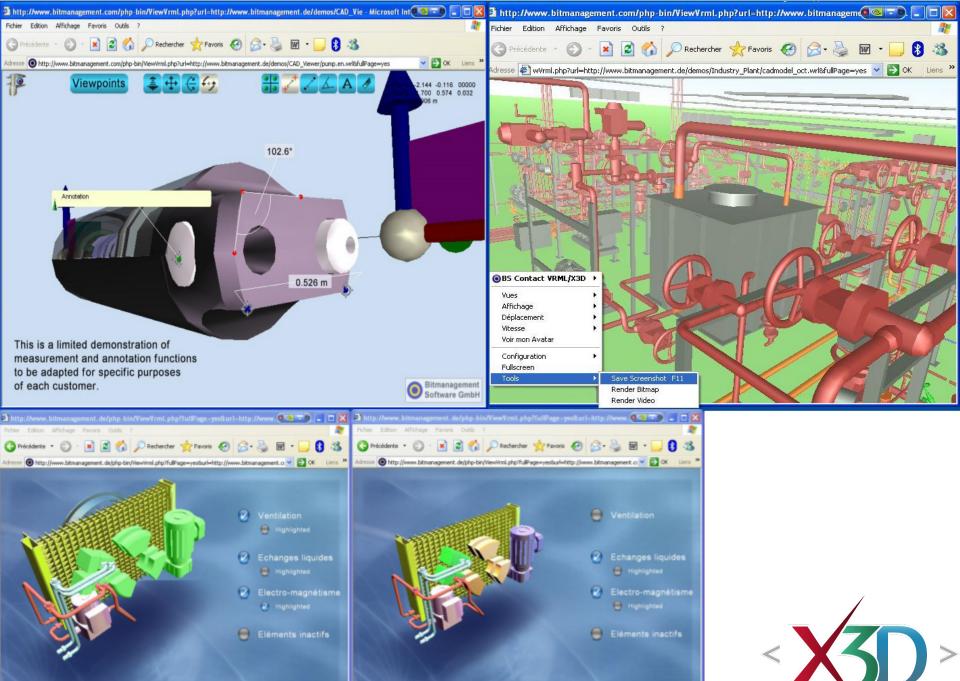
X3D CAD self-assessment report covering 36 SC4 topic areas

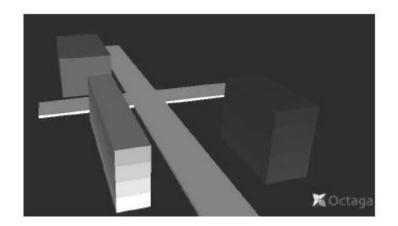
Excellent resource describing range of X3D capabilities and also projected extensions

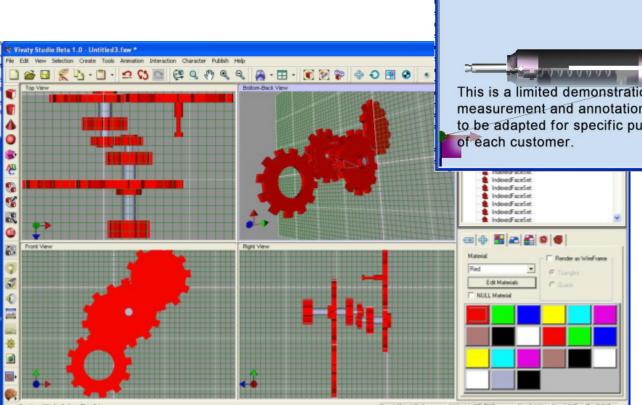

- Produced collaboratively using Web3D wiki for CAD working group
- http://www.web3d.org/membership/login/memberwiki/index.php/CAD
- 1: STEP Consistency
- 2: STEP Mapping
- 3: STEP & Product Life Cycle
- 4: View Geometry, Attributes, Viewing Attributes, Management and other information
- 5: Display selection & editing
- 6: Print/Plot
- 7: Zoom/Pan
- 8: Camera Rotation
- 9: Bill of Material (BOM)
- 10: Screen Capture
- 11: Measurement

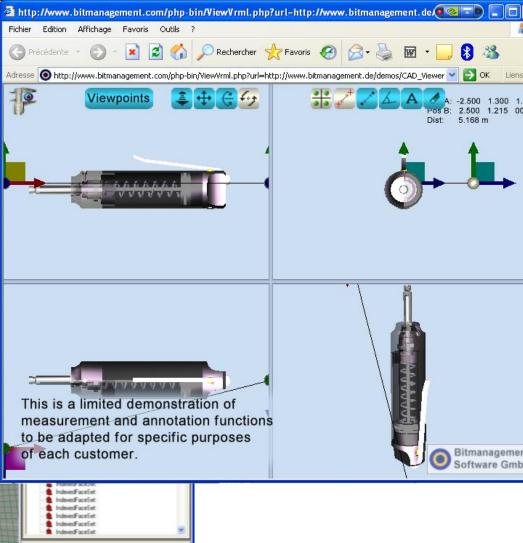

X3D CAD self-assessment topics 2

- 12: Sectioning
- 13: Compare
- 14: Markup
- 15: Collaboration
- 16: Transformation/Manipulation
- 17: Grouping
- 18: Animation
- 19: Annotation Association
- 20: Clearance & Interference Analysis
- 21: View Annotation
- 22: Performance Settings
- 23: Standard View Creation
- 24: Create Reference Planes


- 24: Create Reference Planes
- 25: Area Selection Filter
- 26: Entity Selection Filter
- 27: Visualization File Attributes
- 28: Interrogation
- 29: Instances
- 30: External References
- 31: Accuracy
- 32: Kinematics
- 33: Rendering Modes
- 34: Lighting Control
- 35: Data Format Footprint
- 36: Persistence of Visualization Information

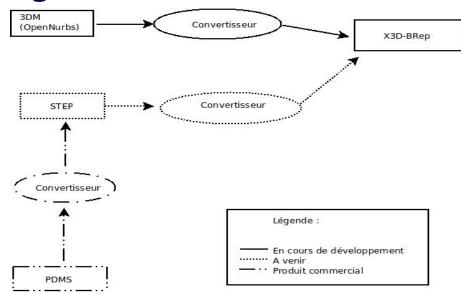






web3d-fr.com

web3d-fr.com



Format converters

Tool support is emerging

- Kshell
- PartDB
- Xj3D
- Okino Polytrans
- CAD Exchanger
- Others

Okino Polytrans converter

http://www.okino.com

Company

Support Developer

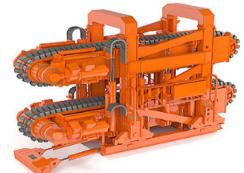
Quick Info

Welcome ProlEngineer® and Other CAD Users!

...An Overview of Using Okino Software for CAD Data Processing.

Questions? Email our CAD system software architect right now!

Welcome Pro/E and other CAD users! For well over a decade and a half Okino Computer Graphics has provided the absolute defacto Pro/E conversion system used throughout the world by our user base of tens of thousands of 3D professionals for mission and application-critical applications. We utilize an embedded version of the actual Pro/Engineer software inside of Okino's popular PolyTrans and NuGraf software, allowing for 100% error free import of native, encrypted Pro/E assemblies, part files and instance accelerator files. There is technically no other more ideal or error free conversion pipeline available for native Pro/E data. No intermediate file formats are used nor are reverse engineered CAD toolkits used to access the Pro/E data.



You are here: Home » Specialized Sections

Please take a moment to review the <u>Okino Granite Importer</u> overview, which explains how the embedded PTC Granite technology relates to this Okino CAD importer pipeline and click <u>here</u> to view Okino's Pro/E importer online help, feature list and option descriptions.

This CAD pipeline solution allows complete Pro/E parts and assemblies to be converted cleanly and professionally to all other major 3D file formats, animation packages and visual simulation programs. It also allows all disparate departments of large enterprise companies (such as engineering, design, marketing and support) to easily exchange product data without the need to rebuild their CAD datasets -- downstream uses include product documentation and manual creation, animation and rendering software, visual communication and review of data, and for accessing easier to manipulate versions of the original CAD datasets.

Okino's Pro/E CAD conversion pipeline is synonymous with moving complex Pro/E assemblies into 3ds Max, Maya, Lightwave, Softimage (XSI) and Cinema-4D for animation and rendering. In addition, Okino's ProE conversion system is used in conjunction with many OEM and third party vendor integrations, and for re-purposing Pro/E assembly data into all major 3D downstream 3D file formats such as Collada, DirectX, DXF/DWG, FBX, HOOPS/DWF-3D, JT Open, NGRAIN, OpenFlight, PLY, Renderman RIB,

Providers of Professional 3D Production

Tools & Technologies for Over 2 Decades

Rhino/OpenNURBS, SketchUp, Shockwave-3D, trueSpace, U3D, VRML1+2+X3D, Wavefront OBJ, XAML-3D, and XGL.

CAD Exchanger

http://www.cadexchanger.com

CAD Exchanger, your 3D data translator Writing X3D files

Home | Products | Formats | Download | Forum | Contacts | About

Writing X3D files

CAD Exchanger offers the following products related to writing files in X3D (eXtended 3D) format:

IGES to X3D converter

CAD Exchanger can read IGES files and convert them to X3D files.

STEP to X3D converter

CAD Exchanger can read STEP files and convert them to X3D files.

ACIS-SAT to X3D converter

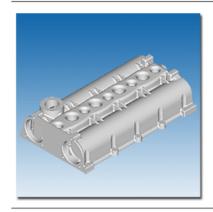
CAD Exchanger can read ACIS-SAT files and convert them to X3D files.

Parasolid-XT to X3D converter

CAD Exchanger can read Parasolid-XT files and convert them to X3D files.

BRep to X3D converter

CAD Exchanger can read BRep files and convert them to X3D files.


STL to X3D converter

CAD Exchanger can read STL files and convert them to X3D files. This option is currently available via <u>SDK</u> only.

Files in the X3D format typically have *.x3d file name extensions.

X3D writer (exporter) supports the following scope of the X3D format:

- Triangulation meshes
- Colors
- Names

X3D Resources: Conversions

http://www.web3d.org/x3d/content/examples/X3dResources.html#Conversions

Conversions and Translation Tools

Many good conversion tools exist for X3D. Converting to/from VRML (.wrl) can also often work well, since X3D is 3rd-generation VRML.

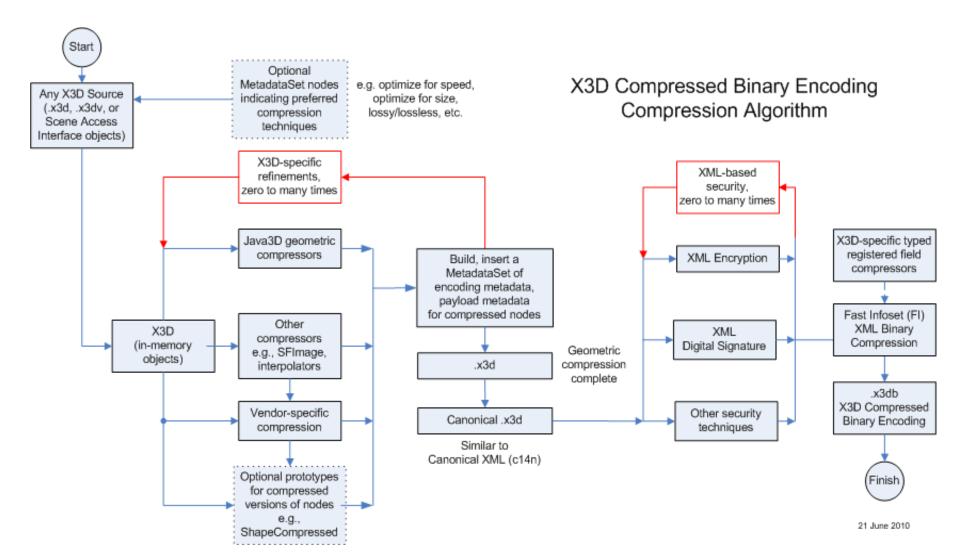
- Okino Polytrans is the premier industry translation tool that can convert many many different file formats (including Collada) to and from X3D, VRML97 and VRML 1.0.
- Xi3D Open Source for X3D/VRML97 includes a command-line X3D translator between XML encoding (.x3d), Classic VRML encoding (.x3dv) and VRML97 encoding (.wrl). These capabilities are also embedded under *Import* and *Export* menus in X3D-Edit. Xi3D can also import Collada files.
- X3D-Edit exposes all Xj3D capabilities. It can also import, edit and validate Collada files.
- InstantReality X3D encoding converter is an online translator between ClassicVrml encoding (.x3dv) or VRML97 encoding (.wrl) to XML encoding (.x3d).
- XSLT Stylesheets convert .x3d scenes into alternate formats and encodings. These slidesets (and corresponding batch files) are bundled in X3D-Edit.
 - Conversion to ClassicVRML (.x3dv encoding): <u>X3dToX3dvClassicVrmlEncoding.xslt</u>, <u>X3dToVrml97.xslt-fileEncoding=ClassicVRML</u> and <u>X3dToX3dvClassicVrmlEncoding.bat</u>
 - Backwards compatibility with VRML 97 (.wrl encoding): X3dToVrml97.xslt and X3dToVrml97.bat. Warnings are embedded in the output .wrl and provided on the console when such conversions have any difficulty due to an X3D feature not being supported in VRML97. In general, any X3D scene that fits within the Immersive Profile will convert successfully to VRML97.
 - Tagset pretty-printing in XHTML (.html encoding), includes cross linking of DEF/USE/ROUTE/etc.: X3dToXhtml.xslt and X3dToXhtml.bat (plus incremental partial-stylesheet lesson examples X3dToXhtmlStylesheetExamples.zip)
 - Current versions of the X3D stylesheets are checked into version control at http://x3d.svn.sourceforge.net/viewvc/x3d/www.web3d.org/x3d/stylesheets
- BitManagement capabilities include BS Converter for 3ds max and BS Converter for Blender.
- <u>NIST VRML</u> to X3D <u>Translator</u> was originally written by Qiming Wang. An <u>updated version of the source</u> (and a <u>.zip</u> distribution) are maintained on SourceForge. The translator is also bundled in X3D-Edit under the X3D/Import/VRML97 menu.
- Blender Model Export To X3D using X3D-Edit describes the excellent top-level support provided by Blender.
- <u>Chisel VRML Optimisation Tool</u> with new version <u>autoinstaller</u> and <u>documentation</u> provided by <u>Halden Virtual Reality Centre</u>. Originally built by Trapezium and maintained by NIST.
- XIOT X3D Input Output Tool library provides an open source generic C++ toolkit to import and export X3D in its different XML encodings: ASCII and binary. A special development was done to provide a Fast Infoset (FI) based X3D encoding.
- The SwirlX3D Translator is an enhanced version of the Viewer that permits Collada and 3DS files to be imported into VRML or X3D.
- Vivaty has excellent utilities and converters for Google Earth KML/Sketchup, Autodesk 3DS Max, Autodesk Maya, and Unreal. Vivaty Studio also includes Collada import.
- Accutrans 3D by MicroMouse Productions provides accurate translation of 3D geometry between the file formats used by many popular modeling programs.
- Project Rawkee: Open-Source X3D Plugin for Maya by the Archaeology Technologies Laboratory (ATL) of North Dakota State University (NDSU).
- Unreal Realm of Concepts: Unreal to X3D Exporter by Dave Arendash
- VRML 1.0 to VRML97 Converter by Octaga
- Anark is able to export product data into high-precision B-rep and lightweight mesh formats including SolidWorks, Inventor, ACIS, CATIA V4/V5, Parasolid, STEP, NX (formerly Unigraphics), IGES, COLLADA, DWF, X3D, and VRML.
- MeshLab is an open source, portable, and extensible system for the processing and editing of unstructured 3D triangular meshes.
- view3dscene supports VRML/X3D, Collada, OpenInventor 1.0, 3d Studio Max 3DS, Quake 3 MD3, Wavefront OBJ and Videoscape GEO.
- <u>CAD Exchanger</u> is a product family aimed to help CAD professionals in a well known yet challenging problem: 3D CAD data conversion. Supported formats currently include IGES, STEP, ACIS-SAT, Parasolid-XT, STL, VRML, X3D and BRep.
- Ayam is a free open-source 3D modeling environment for the RenderMan interface with X3D import and X3D export.
- Modo by Luxology is a sophisticated authoring tool that includes X3D export.
- SteelVis (CIS/2 to VRML and IFC Translator, aka CIS/2 Viewer) by National Institute of Standards and Technology (NIST)

X3D Compressed Binary Encoding (CBE)

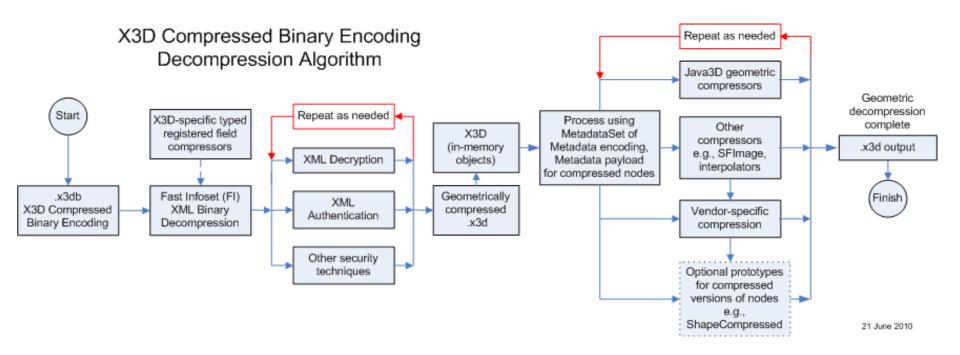
X3D Compressed Binary Encoding

Matched functional capability of X3D encodings

• XML .x3d, ClassicVRML .x3dv, CBE .x3db


Combines two types of compression

- Geometric compression: polygon reduction, flattening/merging, representation techniques using Java3D compression (Deering algorithms)
- Information-theoretic compression using XML-based ISO standard Fast Infoset (FI)


Web3D Consortium, ISO approval late 2010

- Now aligning three independent implementations
- Considering W3C Efficient XML Interchange (EXI) as likely future addition to Fast Infoset

X3D compression algorithm

X3D decompression algorithm

.x3db CBE Implementations

XIOT: X3D Input/Output Tool library

- http://forge.collaviz.org/community/xiot
- Open source C++
- Collaviz Remote Collaborative Visualizer project

Xj3D toolkit

- http://www.xj3d.org, http://xj3d.org/tutorials/filters.html
- Open source Java

At least one other browser company has a partial implementation, work is ongoing

Efficient XML Interchange (EXI)

W3C XML Binary Characterization

Established common needs among hard use cases

W3C EXI Recommendation

Public review, last call status

Technical approach

- Benefit compaction, decompression speedup
- Type aware, schema-informed or not
- Adaptive tokenization, compression tables
- Can stabilize on a document type or further refine based on statistical analysis of corpus

EFFICIENT XML INTERCHANGE (EXI) COMPRESSION AND PERFORMANCE BENEFITS: DEVELOPMENT, IMPLEMENTATION AND EVALUATION

<MOTIVATION>

Compact & Efficient XML

Better Compression than other Techniques with Binary Data

Bandwidth Maximization / Deepening The Web

Extends XML use to Low-bandwidth, High- Volume Domains

Standardization and Interoperability

World Wide Web Consortium Member Created

"Best of Breed Solution"

Application To DoD

- · DoD is Heavily Invested in XML
- · DoD Files are often Numerically Intensive
- · DoD Files are often Very Large
- · Next Generation of Devices Supported
- · DoD Tactical Networks are Bandwidth Limited

<PROBLEM STATEMENT>

Network Edge Devices Unable To Process Native XML Format (Battery, CPU, Bandwidth)

- XML is VERBOSE
- XML is Text Only = Computationally Expensive
- String to Numeric Conversions
- Memory Intensive
- Power Demanding

Net-Centric Warfare Requires XML

- · Every Sailor and Soldier is a Sensor (Low Bandwidth mobile edge)
- System of Systems Interoperability (the DoD Information Warfare vision)

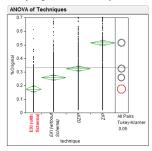
Why Not GZip

- · Because it Doesn't Address Processing Efficiencies
- Better Compression can be Achieved for XML

<SOLUTION>

Standardized Compact And Efficient Binary Xml Format: Efficient XML Interchange (EXI)

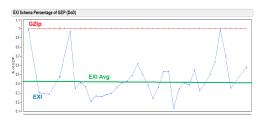
Both commercial and open-source implementations available



W3C Endorsed

- Up to Hundreds of Times Smaller, Faster than Native XML
- 100% Compatible with XML, Including Schema-based, Free Form or Multiple-Namespace Hybrid XML

<CONCLUSIONS>


EXI Deliver Statistically Significant XML Improvements

773 XML examples compared in the W3C EXI Test Corpus hosted at NPS

Analysis of Common Compression Techniques at 95% alpha factor EXI (schema and schemaless) deliver statistically smaller files

EXI has DoD Specific Expectation of Doubling Bandwidth Potential

EXI compared to GZip (standard compression) in the long run average is 42% of GZip = 116% increase in bandwidth potential for DoD

Passes The Litmus Test Of Technology Development

- . More Deeper network penetration with all the benefits of XML
- Better Usage with what you already have transparently
- Faster Information exchange

<!-- FURTHER INFORMATION -->

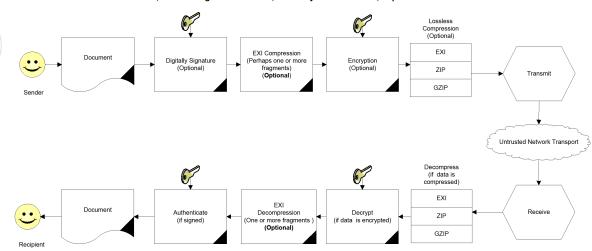
ontacts:

Don Brutzman, brutzman@nps.navy.mil, 831.656.2149 Sheldon L. Snyder, slsnyder@nps.edu

Web Security standards are compatible

X3D's XML and Compressed Binary encodings allow use of W3C's Security recommendations

XML Encryption


- demonstrated in NPS thesis, also included in X3D-Edit tool
- XML Digital Signature (for authentication)
- XML Public key infrastructure
- Security based on Web standards lets authors and companies protect their 3D model assets
- Rather than "security through obscurity"
- X3D-Edit support uses Apache libraries

DOCUMENT-BASED MESSAGE-CENTRIC SECURITY USING XML AUTHENTICATION AND ENCRYPTION FOR COALITION AND INTERAGENCY OPERATIONS

Master's Thesis, Naval Postgraduate School, Monterey California USA, September 2009

MOTIVATION

Diverse often-changing members of multinational or multiagency coalitions cannot share sensitive data over shared networks because their security policies always differ widely. Document-based security via international Web-based standards is possible using XML Digital Signature, XML Encryption, and Efficient XML Interchange (EXI) compression. Network independence provides a globally interoperable means for secure exchange of messages among trusted partners.

XML Digital Signature provides message integrity, sender authentication, and sender non-repudiation of the message fragment or the document by default. XML Encryption provides confidentiality.

The appropriate application of Web-based XML security provides discretionary access control (DAC) to support the secure dynamic exchange of information, even when used between entities employing dissimilar systems via an insecure transport. The strength of the encryption is simply dependent upon the encryption algorithm chosen.

Common use of international standards promotes trust between organizations because each participant is responsible for choosing and supporting independent sets of tools based upon consistent standards.

RESEARCH QUESTIONS

This work addresses the following questions.

- Can an XML document that includes XML Encryption and XML Signature Elements provide adequate security commensurate with the security level of the data contained therein?
- Do the standardized XML Signature, XML Encryption and authentication recommendations satisfy Information Assurance (IA) requirements within the construct of Discretionary Access Control (DAC) while transmitting or sharing data, including different gradients within unclassified classification levels for which each group of users are authorized to view?
- Can an XML document or message fragment be restricted to showing the appropriate level of allowed data access by automatically checking the credential store local to the machine from which it is being accessed?
- Do these techniques further apply when used in Web Services and real-time XML chat messaging, as well as X3D visualization and simulation streaming?
- 5. Can document-level XML security be compatibly applied within both current and projected restrictions and best practices governing coalition and multiagency operations?

METHOD

Protocol Analysis

Evaluation of protocols, ordering, and methodology is based upon W3C Recommendations for XML security to provide adequate protection for unclassified documents.

Interoperability Testing

Testing was conducted for encrypted and signed XML messages across multiple platforms to ascertain its validity using a variety of XML languages. Document exchange included Linux, Windows and Mac OS X operating systems using Internet Explorer, Firefox, and Safari web browsers.

Exemplar

A practical usage of XML Digital Signature, XML Encryption, Compression and XML Authentication is demonstrated within exemplar scenarios and use cases for multinational and multiagency operations.

An open-source document authoring tool is online at https://savage.nps.edu/X3D-Edit with examples at http://web3d.org/x3d/content/examples/Basic/Security

CONCLUSIONS

XML security using XML Digital Signature, XML Encryption, EXI compression and XML authentication provides a viable international solution for securely exchanging unclassified information. This method can work dynamically across an insecure transport between joint, coalition, multinational and multiagency organizations. This work can be applied across a variety of transport protocols including http/https, ssh/sftp, web services and XMPP chat sessions.

Contact Information

Don Brutzman, PhD. brutzman@nps.navy.mil	Thesis Advisor
Don McGregor mcgredo@nps.edu	Second Reader
Jeffrey S. Williams jeffrey.williams2@navy.mil	Information Professiona

Concepts: X3D CAD Component

Common fields for X3D nodes

X3DProductStructureChildNode interface

X3DProductStructureChildNode interface indicates that this is a structural node

CADLayer, CADAssembly, CADPart, CADFace

Common field: *name* string (default is blank)

X3D Nodes and Examples

CADLayer

CADLayer is a Grouping node that can contain most nodes

- visible field is a boolean array that indicates whether each child is displayed, default is true
- Typically contains one or more Assembly nodes
- Can also contain Shapes or other grouped content

© Edit CADLayer				
DEF TopL	ayer			
USE 🔘	▼ children ▼			
name	Single topmost CADLayer for this model			
visible				
bboxCenter	0 0			
bboxSize	-1 -1 -1			
CADLayer is a Grouping node that can contain CADAssembly and most other nodes.				
	Visualize Accept Discard Help			

CADAssembly

CADAssembly is a Grouping node that contains a set of CADAssembly or CADPart nodes

- Thus assembly consists of sub-assemblies and parts
- Design is not intended to hold other content

© Edit CADA	ssembly		
DEF	+ containerField		
USE 🔘	▼ children ▼		
name	Assembled Teapot		
bboxCenter	0 0		
bboxSize	-1 -1 -1		
CADAssembly can contain CADAssembly (subassembly), CADPart or CADFace nodes. Hint: CADAssembly can also contain Shape or other grouped content nodes.			
Visualize Accept Discard Help			

CADPart

CADPart is a Grouping node that contains one or more CADFace nodes to make a Part

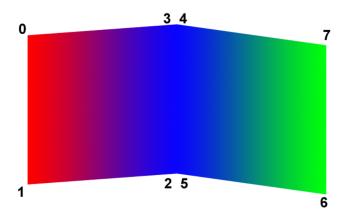
- Also includes Transform fields to locate children
- Design is not intended to hold other content

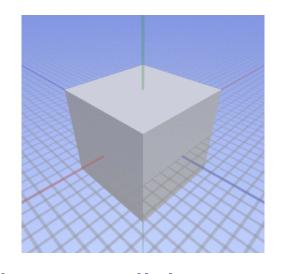
© Edit CADPa	rt			X
DEF	E ●			containerField
USE 🔘			▼ [☐ children ▼
name	Body			
translation	0	0	0	Apply scale factor ▼
rotation	0	0	1	0
center	0	0	0	Apply scale factor ▼
scale	1	1	1	Insert scale factor ▼
scaleOrientation	0	0	1	0
bboxCenter	0	0	0	
bboxSize	-1	-1	-1	
CADPart can contain multiple CADFace nodes that make up a single part.				
Visualize Accept Discard Help				

CADFace

CADFace is a Grouping node that contains a single Shape (or else an LOD node showing one Shape)

- Holds geometry representing a face of a part
- If child LOD, each level should be single Shape
- Experimental: contain Transform, but still only one Shape
- Design is not intended to hold other content


© Edit CADF	ace			
DEF	containerField			
USE 🔘	▼ children ▼			
name	Teapot body IFS mesh			
bboxCenter	0 0			
bboxSize	-1 -1 -1			
CADFace contains a single Shape node showing one face that helps to make up a CADPart. Hint: CADFace can also contain LOD or (experimental) Transform nodes that hold Shape, but only one Shape can be visible at a time.				
Visualize Accept Discard Help				



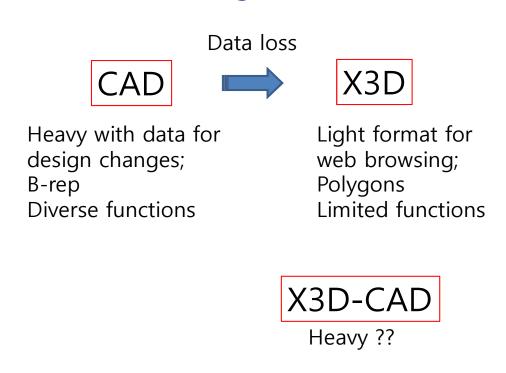
Additional nodes

Quadset and IndexedQuadSet are straightforward and covered in X3D For Web Authors chapter 13

OrthoViewpoint node is covered in X3D For Web Authors chapter 4

 An orthographic view has all projected lines parallel to the projector from centerOfRotation to position

Applications


CAD applications for X3D

Is X3D CAD heavy or light?

from Professor Soonhung Han of KAIST:

This is the right question to explore. The way to answer it is through testing.

CAD Working Group Web3D Consortium

Next steps, work in progress

Next steps for CAD working group

Lots of progress has occurred...

- CAD Working Group reactivated
- Example CAD models => scenes in version control
- X3D Validator and quality assurance testing

Lots of work still to be done!

- Compressed Binary Encoding (CBE) implementation interoperability
 - Test corpus to measure size & speed improvements
- Are B-REP definitions correct? Are B-REPS best suited for CADmodel conversion tools, or should authors use them?
 - Do the B-REP renderers work? B-REP tesselation to polygon export in our converters? Constructive solid geometry (CSG)?
- Demonstrate Parametric History approach, capability in tool set

Steady progress, going forward together

Next-step progress for CAD: links

- X3D CAD Executive Summary
- CAD Working Group Public Wiki
 - http://www.web3d.org/x3d/wiki/index.php/X3D_CAD
- Planned improvements for X3D v3.4

X3D CAD Macro-Parametric Approach

Additional Resources

Resources 1

CAD Working Group pages

- http://www.web3d.org/realtime-3d/working-groups/computer-aided-design-cad
- http://www.web3d.org/x3d/wiki/index.php/X3D_CAD

Conversion and Translation Tools

http://www.web3d.org/x3d/content/examples/X3dResources.html#Conversions

CAD Examples: X3D Basic Archives

http://www.web3d.org/x3d/content/examples/Basic/CAD

Browsers and players

Player support for X3D components wiki has latest list

X3D-Edit authoring tool

https://savage.nps.edu/X3D-Edit

Resources 2

Kshell IGES to X3D converter

http://www.kshell.com/pages/x3d_cad

Stamp X3D Model

StampX3dLetters.x3d and StampX3dLetters.html

Online 3D printing: order a Stamp X3D Model

built by Shapeways!

Chapter Summary

Chapter Summary

CAD component allows structuring X3D models to match common structure within CAD models

CAD distillation filters and X3D binary encoding allow large-model reduction to practical levels

Long-running work in progress

Multiple technical challenges are steadily being addressed

Ongoing work to build repeatable, royalty-free results available for broad use on the Web

Suggested exercises

Test and adapt provided example scenes

Perform geometry reduction of a large mesh

Using X3D-Edit, Xj3D, MeshLab or any other tool

Repurpose a CAD model using a conversion tool, simplify X3D model further using CDF filters, maintain basic structure using CAD nodes

Add animation to model, publish to Web

Sponsor, partnership opportunities

Numerous government agencies might benefit if stable Web modeling and delivery was possible for CAD engineering models

• Training, simulation, visualization, outreach, etc.

Most CAD companies selling authoring tools are not highly incentivized to be interoperable

Numerous incompatible CAD formats

Numerous sponsor, partnership opportunities are available to advance X3D CAD capabilities

Please contact Web3D CAD Working Group to discuss

X3D: Extensible 3D Graphics for Web Authors by Don Brutzman and Leonard Daly, Morgan Kaufmann Publishers, April 2007, 468 pages.

http://x3dGraphics.com

X3D Resources and X3D Basic Examples Archive

- http://www.web3d.org/x3d/content/examples/X3dResources.html
- http://www.web3d.org/x3d/content/examples/Basic/DistributedInteractiveSimulation

X3D-Edit Authoring Tool

https://savage.nps.edu/X3D-Edit

X3D Scene Authoring Hints

http://x3dgraphics.com/examples/X3dSceneAuthoringHints.html

X3D Graphics Specification

- http://www.web3d.org/x3d/specifications
- Also available as help pages within X3D-Edit

Xj3D Converter shell scripts

http://www.Xj3D.org

MeshLab tool for 3D triangular meshes

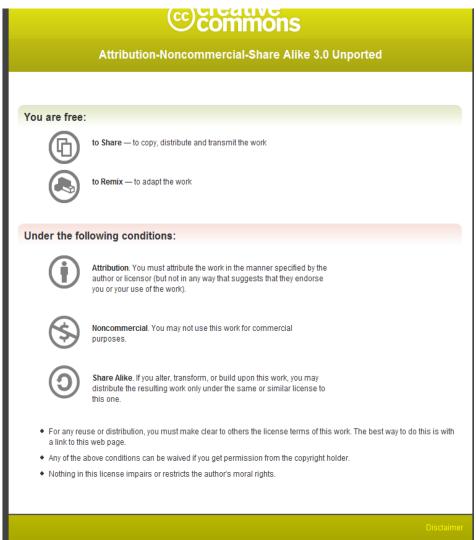
http://meshlab.sourceforge.net

Contact

Don Brutzman

brutzman@nps.edu

http://faculty.nps.edu/brutzman


Code USW/Br, Naval Postgraduate School Monterey California 93943-5000 USA 1.831.656.2149 voice

Creative Commons open-source license

http://creativecommons.org/licenses/by-nc-sa/3.0

< **3**0

Open-source license for X3D-Edit software and X3D example scenes

http://www.web3d.org/x3d/content/examples/license.html

Copyright (c) 1995-2013 held by the author(s). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the names of the Naval Postgraduate School (NPS) Modeling Virtual Environments and Simulation (MOVES) Institute nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

X3D Graphics Support for Computer Aided Design (CAD)

"In Theory: theory and practice are the same.

In Practice: they're not."

— Yogi Berra

Don Brutzman Naval Postgraduate School brutzman@nps.edu

Contents

Chapter Overview and Concepts

CAD Working Group

- Phase 1: Scene Structure
- Phase 2: Parametric History and B-REPS
- X3D Compressed Binary Encoding (CBE)
- X3D CAD Concepts: common fields for X3D nodes

X3D Nodes and Examples

Applications, Next Steps, Additional Resources

Chapter Summary and Suggested Exercises

References

Overview

CAD models tend to have complex geometry and metadata, captured in proprietary formats

Long-running efforts to consistently expose heavyweight CAD models as lightweight X3D

- CAD structure and OrthoViewpoint (X3D v3.1)
- Boundary Representations (B-REPS) for geometry
- Parametric History to unlock CAD models as X3D

Various open-source tools, codebases available

- Limited by single X3D browser, diverse tool chain
- Important work continues

The metadata often captures generic information like design intent, tolerances, manufacturing parameters, etc. These are important items for engineers working to produce products. Nevertheless information at such extreme detail is rarely needed for Web use cases like simple visualization, maintenance, virtual world animation, etc.

back to Table of contents

CAD Working Group History, first phase 2003-2004:

scene structure

History: first phase 2003-2004

Established CAD X3D Working Group

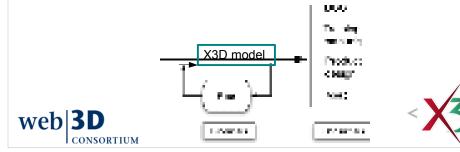
· Closed to members, considered patented work

Determined common use cases:

- Digital content creation (DCC) creates interoperable X3D web-based models from CAD diagrams
- Architecture Engineering Construction (AEC)
- Interactive Engineering Technical Manual (IETM)

Defined X3D basic scene-graph organizational structure for containing CAD models

• Face, Part, Assembly, Layer



CAD Distillation Filter (CDF) concept

CAD Distillation Filter (CDF) is process that provides successive filtering to reduce and refine a single X3D model

- Each filter can be simple and do one thing well
- X3D in, X3D out. Not a separate format.
- · Applicable to wide range of input scenes

CAD Geometry Component

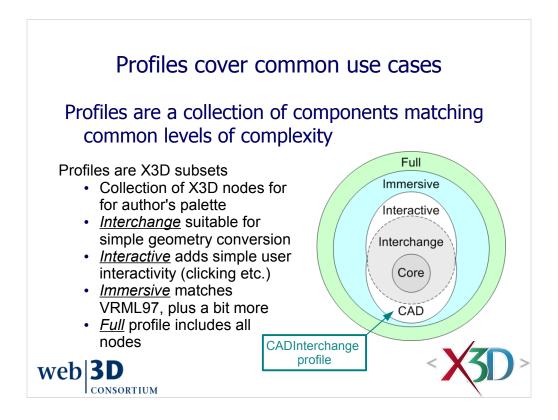
Levels 1, 2 defined as part of X3D v3.1

Level 1. Additional geometry support:

• IndexedQuadSet, QuadSet

Level 2. Structure, viewing

- X3DProductStructureChildNode nodes: CADAssembly, CADFace, CADLayer, CADPart
- OrthoViewpoint, ViewpointGroup



http://www.web3d.org/x3d/specifications/ISO-IEC-19775-1.2-X3D-AbstractSpecification/Part01/components/CADGeometry.html

Specification bug filed to add OrthoViewpoint, ViewpointGroup to CADInterchange support.

http://www.web3d.org/x3d/specifications/ISO-IEC-19775-1.2-X3D-AbstractSpecification/Part01/components/CADGeometry.html.

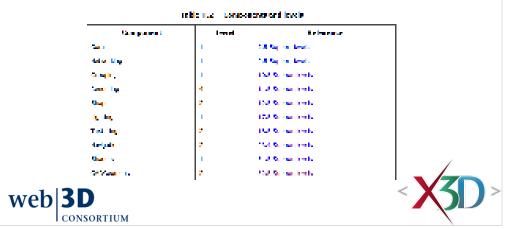
This is known as the "onion" diagram for X3D profiles and components.

Usually authors don't have to worry about any of this. Immersive Profile is common for most cases. Tools warn if insufficient profile/component levels are specified.

Profile and component support levels are listed in detail in X3D Specification Annexes which list corresponding support levels, nodes, numbers of polygons, etc. etc.

- · A Core profile
- B Interchange profile
- C Interactive profile
- D MPEG-4 interactive profile
- E Immersive profile
- F Full profile

Of particular interest is the corresponding table which shows which version of X3D is required for each node.


L Version content

For convenience, authors can also use the Component index, Profile index and Node Index which list the support levels required for each node.

CAD Interchange Profile

Also defined full set of nodes needed for CAD

- Allows lightweight support by tools and browsers
- · Improve scene portability and interoperability

http://www.web3d.org/x3d/specifications/ISO-IEC-19775-1.2-X3D-AbstractSpecification/Part01/CADInterchange.html

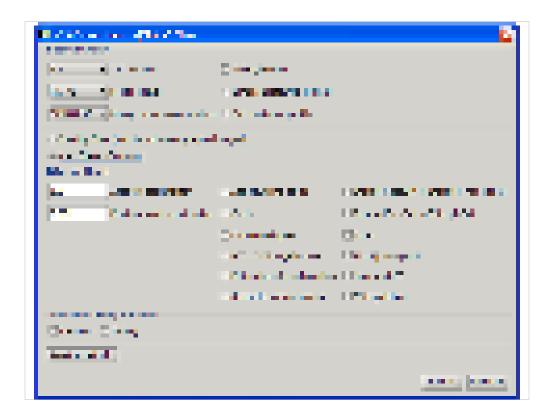
```
COD

The description of the control of the control
```

http://www.web3d.org/x3d/specifications/ISO-IEC-19775-1.2-X3D-AbstractSpecification/Part01/CADInterchange.html

Support for CAD filters, decimation

Xj3D supports multiple CAD filter capabilities for geometry simplification and profile reduction


Can invoke via command line or build script
 X3D-Edit authoring tool exposes these filters via user interface

Other tools also exist, may need to be adapted for X3D use. Example:

Meshlab http://meshlab.sourceforge.net

X3D-Edit available at https://savage.nps.edu/X3D-Edit

X3D-Edit provides this interface to expose the Xj3D functionality for CAD distillation filtering. Xj3D functionality can also be utilized via use of exposed Java classes or else command-line invocation.

VRML97 and X3D v3.0 support

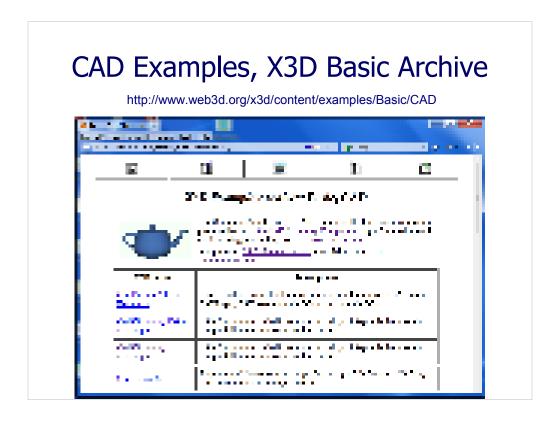
CAD nodes were not included in VRML97

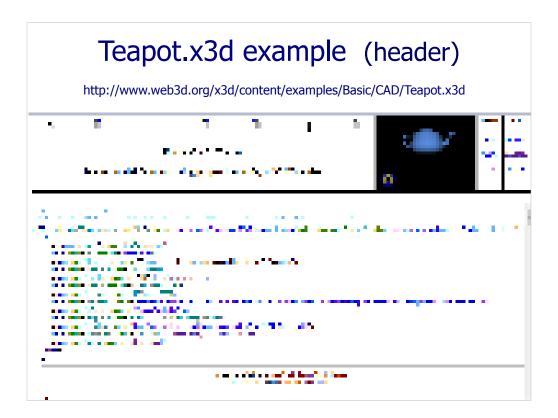
• First approved as part of X3D version 3.1

Nevertheless support for CADAssembly, CADFace, CADLayer, CADPart is possible

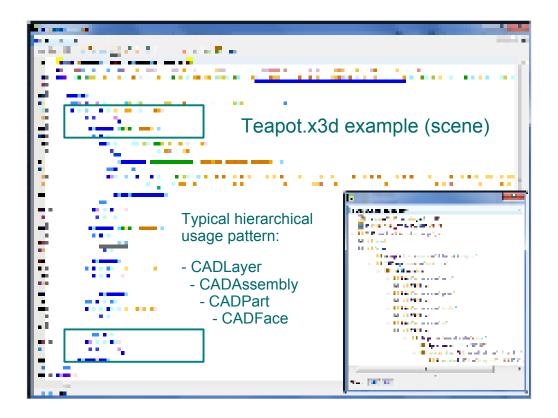
- Prototypes written that implement these nodes
- This is possible because they are structural and can be repeated using the VRML97 vocabulary
- Prototype support automatically included in X3dToVrml97.xslt conversion stylesheet, templates CADGeometryPrototypes, CADGeometryExternPrototypes

QuadSet, IndexedQuadSet nodes also provided


Quadrilaterals converted to IndexedFaceSet


http://www.web3d.org/x3d/content/examples/Basic/CAD/CADGeometryPrototypes.x3d

http://www.web3d.org/x3d/content/examples/Basic/CAD/CADGeometryExternPrototypes.x3d


These two scenes provide the implementations for six of the CAD component. Thus IndexedQuadSet, QuadSet, CADAssembly, CADFace, CADLayer, and CADPart can all be used with VRML97 and X3Dv3.0 scenes.

Native X3D player support is needed to support the orthographic (perspective-free) OrthoViewpoint node since that is a special feature which cannot be implemented by combinations of other nodes by themselves in a prototype declaration.

http://www.web3d.org/x3d/content/examples/Basic/CAD/Teapot.x3d

http://www.web3d.org/x3d/content/examples/Basic/CAD/Teapot.x3d

Also available: NURBS nodes

Non-uniform Rational B-Spline (NURBS) nodes define parametric surfaces

- Precise, accurate, terse, scalable representations since mathematically defined
- Can be tessellated as high-fidelity polygonal surface at a resolution appropriate to viewer distance
- Difficult to author without special tools
- X3D NURBS nodes include: Contour2D, ContourPolyline2D, CoordinateDouble, NurbsCurve, NurbsCurve2D, NurbsOrientationInterpolator, NurbsPatchSurface, NurbsPositionInterpolator, NurbsSet, NurbsSurfaceInterpolator, NurbsSweptSurface, NurbsSwungSurface, NurbsTextureCoordinate, NurbsTrimmedSurface

back to Table of contents

CAD Working Group History, second phase 2008-2011:

Parametric History conversions and Boundary Representations (B-REPS)

Work in progress

History: second phase 2008-2010

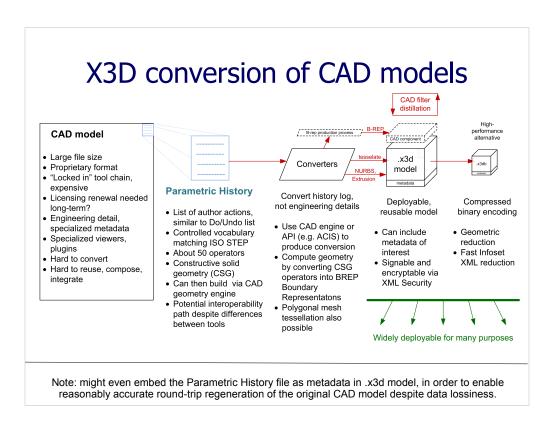
X3D CAD Working Group evaluated Boundary Representations (B-REPS) for possible addition as X3D CAD Component level 3

- Draft specification available, but accessible to Web3D members only
- Safe haven: IPR contributions encouraged, protected during working group review
- Example implementations by Xj3D, Collaviz
- Need to expose examples, tests incomplete

CAD Interoperability

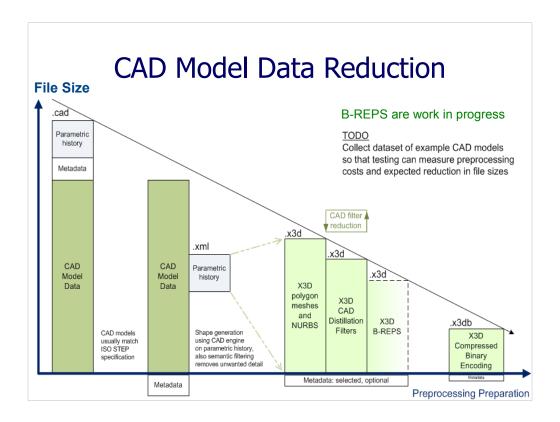
- Boundary Representations (B-REPS) nodes
- Draft CAD specification update held by Yumetech
- ISO TC184 technical evaluation details show X3D fully competitive with other approaches
- (Collada, U3D, JTOpen, some dropped out)
- Close second-place finish, score 82% of 360 points
- Good prospect of unlocking many thousands (millions?) of existing engineering models using Parametric History authoring log
- Dr. Soonhung Han, KAIST Icad Laboratory

CAD Parametric History approach


Numerous different CAD formats exist

- · No single dominant format
- · Formats typically obscure, engineering oriented
- Companies carefully "protect" their customers

Common denominators nevertheless exist


- History file of author steps thus consistently applies fifty-term vocabulary consisting of B-REPS and constructive solid geometry (CSG) operations
- History log can be converted into common syntax, then reconstruct original geometry
- Current KAIST work targeted to produce X3D

CAD Parametric History details

- Many CAD models might be saved with parametric history, but some might not (as authoring choice)
- CAD Model Data might include both geometry meshes and procedurally defined surfaces
- Parametric History provides a redundant record of how the geometric CAD model was created
- Parametric History can be used to independently produce a similar or equivalent set of geometry meshes and procedural surfaces
- This generated result effectively match the shapes captured in the CAD Model Data
- This is a more efficient approach than trying to translate every different CAD format into X3D

Boundary Representations B-REPs

Boundary representations (B-REPS) are used in solid modeling and computer-aided design for representing shapes

 A solid is represented as a collection of connected surface elements, the boundary between solid and non-solid space

Two parts make up a B-REP:

- Topology: faces, edges and vertices
- Geometry: surfaces, curves and points

http://en.wikipedia.org/wiki/Boundary_representation

Goals for use of B-REPS in X3D

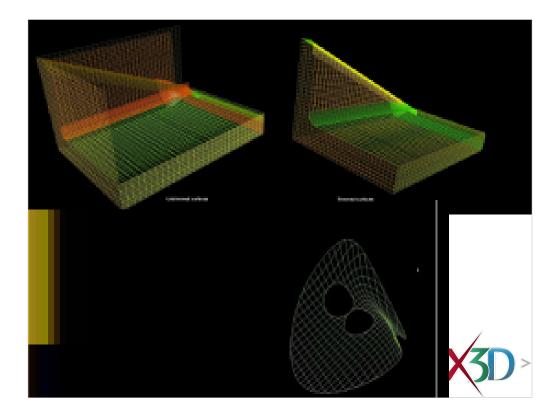
Provide light-weight versions of CAD models

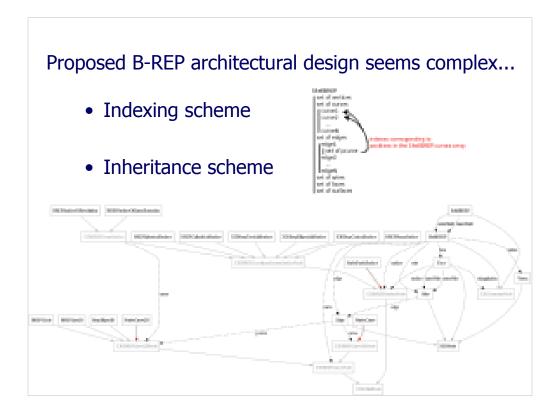
Engineering data fidelity and metadata detail can often be relaxed

Use in various Web-accessible applications such as training, maintenance, simulation and virtual worlds

- Smaller size means shorter download times and faster rendering; original models are impractical
- X3D can add animation of parts, user interactivity, and composition of models

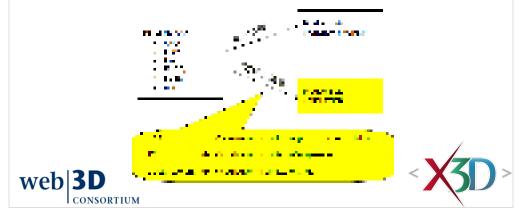
Boundary representation (B-REP) nodes

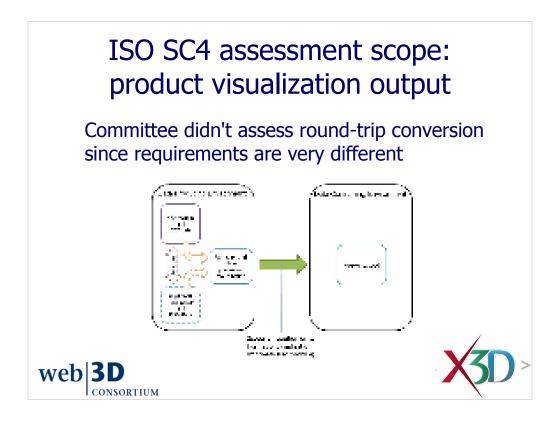

Topological nodes


 Edge, EdgeReference, Face, Wire, Vertex, PointBREP, WireBREP, ShellBREP, SolidBREP

Geometrical nodes

 BREPPlanarSurface, BREPSphericalSurface, BREPCylindricalSurface, BREPToroidalSurface, BREPEllipsoidalSurface, BREPConicalSurface, BREPSurfaceOfLinearExtrusion, BREPSurfaceOfRevolution, BREPCircle2D, BREPLine2D, BREPEllipse2D

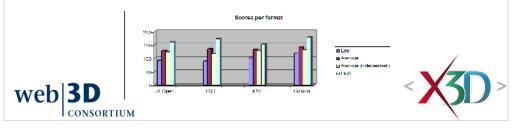




TODO: get darker version of diagram

ISO SC4 Visualization AssessmentISO Standards Committee SC4 assessed multiple

- ISO Standards Committee SC4 assessed multiple candidate visualization formats that met industrydefined requirements for product data visualization
- Published April 2009


ISO SC4 assessment results

X3D scored close second of 5 entries overall

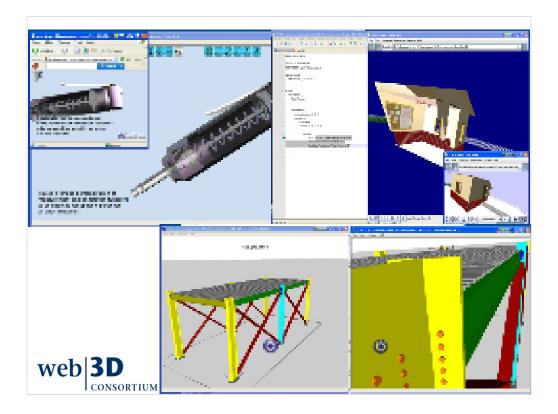
Functional coverage assessment 82% of 360 points

Report recommendations:

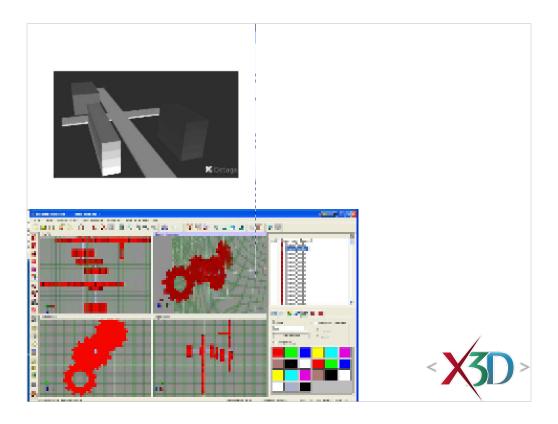
- It is recommended to accept the format candidates COLADA, JT, U3D and X3D as finally assessed to fulfill the requirements for SC 4 visualisation formats.
- This format is complementary to the standards series ISO 10303 "STEP" concerning the visualization data exchange. It is not recommended to use this format for CAx data exchange or product data exchange.

X3D CAD self-assessment report covering 36 SC4 topic areas

Excellent resource describing range of X3D capabilities and also projected extensions


- · Produced collaboratively using Web3D wiki for CAD working group
- http://www.web3d.org/membership/login/memberwiki/index.php/CAD
- 1: STEP Consistency
- 2: STEP Mapping
- 3: STEP & Product Life Cycle
- 4: View Geometry, Attributes, Viewing Attributes, Management and other information
- 5: Display selection & editing
- 6: Print/Plot
- 7: Zoom/Pan
- 8: Camera Rotation
- 9: Bill of Material (BOM)
- · 10: Screen Capture
- 11: Measurement

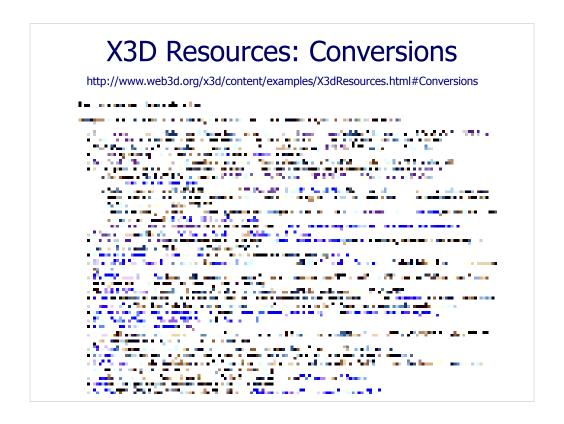

X3D CAD self-assessment topics 2


- 12: Sectioning
- 13: Compare
- 14: Markup
- 15: Collaboration
- 16: Transformation/Manipulation
- 17: Grouping
- 18: Animation
- 19: Annotation Association
- 20: Clearance & Interference Analysis
- 21: View Annotation
- 22: Performance Settings
- 23: Standard View Creation
- 24: Create Reference Planes

- 24: Create Reference Planes
- 25: Area Selection Filter
- · 26: Entity Selection Filter
- 27: Visualization File Attributes
- · 28: Interrogation
- 29: Instances
- 30: External References
- 31: Accuracy
- 32: Kinematics
- 33: Rendering Modes
- · 34: Lighting Control
- 35: Data Format Footprint
- 36: Persistence of Visualization Information


Format converters

Tool support is emerging


- Kshell
- PartDB
- Xj3D
- Okino Polytrans
- CAD Exchanger
- Others

back to Table of contents

X3D Compressed Binary Encoding (CBE)

X3D Compressed Binary Encoding

Matched functional capability of X3D encodings

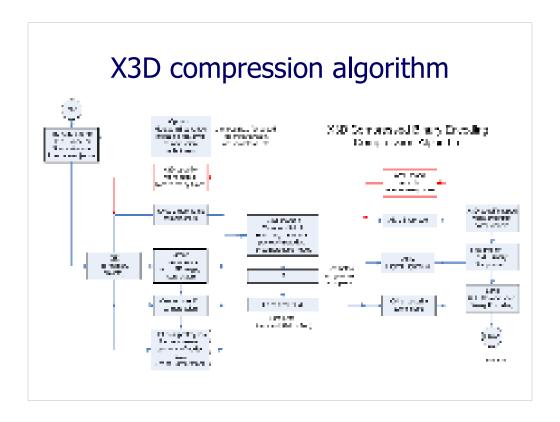
• XML .x3d, ClassicVRML .x3dv, CBE .x3db

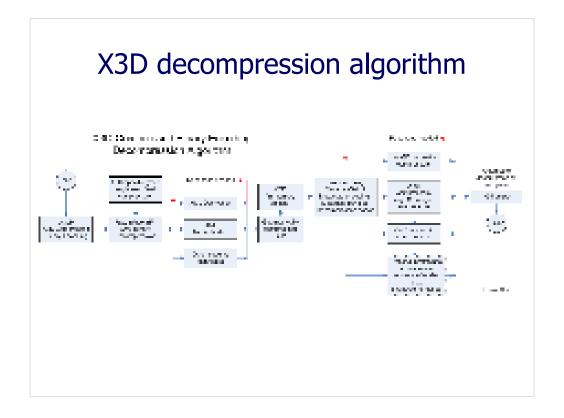
Combines two types of compression

- Geometric compression: polygon reduction, flattening/merging, representation techniques using Java3D compression (Deering algorithms)
- Information-theoretic compression using XML-based ISO standard Fast Infoset (FI)

Web3D Consortium, ISO approval late 2010

- Now aligning three independent implementations
- Considering W3C Efficient XML Interchange (EXI) as likely future addition to Fast Infoset


References


Developing Web Applications with COLLADA and X3D, Remi Arnaud and Tony Parisi, 2007

http://www.khronos.org/collada/presentations/Developing_Web_Applications_with_COLLADA_and_X3D.pdf

Khronos and Web3D Enter Official Cooperation as Mobile & Internet Continue to Converge, 2007

http://www.khronos.org/news/press/releases/2007/04

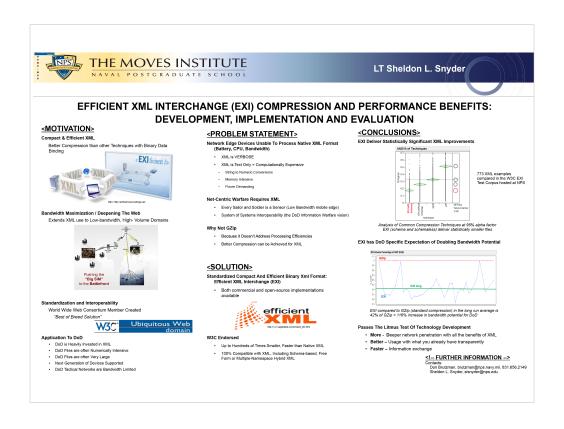
.x3db CBE Implementations

XIOT: X3D Input/Output Tool library

- http://forge.collaviz.org/community/xiot
- Open source C++
- Collaviz Remote Collaborative Visualizer project

Xj3D toolkit

- http://www.xj3d.org, http://xj3d.org/tutorials/filters.html
- · Open source Java


At least one other browser company has a partial implementation, work is ongoing

web|3D

Efficient XML Interchange (EXI)

W3C XML Binary Characterization

- Established common needs among hard use cases
- W3C EXI Recommendation
- Public review, last call status
 Technical approach
- Benefit compaction, decompression speedup
- Type aware, schema-informed or not
- Adaptive tokenization, compression tables
- Can stabilize on a document type or further refine based on statistical analysis of corpus

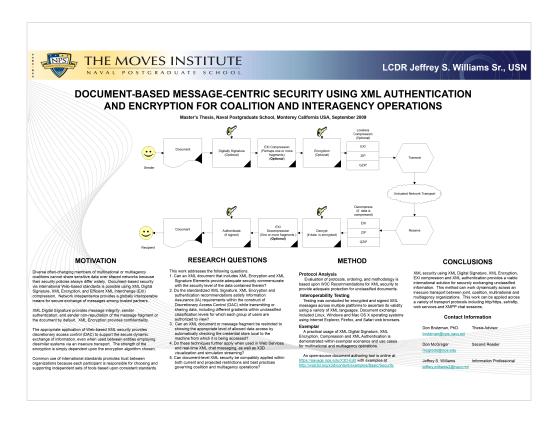
Web Security standards are compatible

X3D's XML and Compressed Binary encodings allow use of W3C's Security recommendations

- XML Encryption
- demonstrated in NPS thesis, also included in X3D-Edit tool
- XML Digital Signature (for authentication)
- XML Public key infrastructure

Security based on Web standards lets authors and companies protect their 3D model assets

- Rather than "security through obscurity"
- X3D-Edit support uses Apache libraries



DRM reference: Philip Hallam Baker, CTO Verisign, "Dot Crime Manifesto"

DRM becomes feasible by using the above technologies

- •More uses than Hollywood-commercial exist
- See Sun's DReaM project http://www.openmediacommons.org

back to Table of Contents

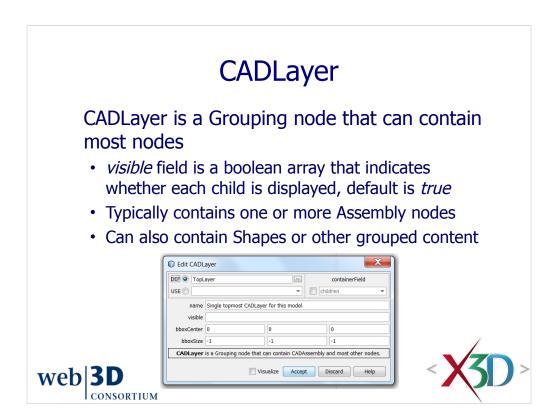
Concepts: X3D CAD Component

Common fields for X3D nodes

X3DProductStructureChildNode interface

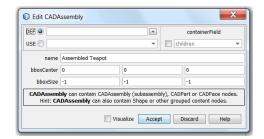
X3DProductStructureChildNode interface indicates that this is a structural node

• CADLayer, CADAssembly, CADPart, CADFace


Common field: name string (default is blank)

X3D Nodes and Examples

web | 3D | CONSORTIUM

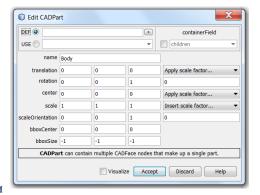


TODO: fix visible editor to handle array of booleans

CADAssembly

CADAssembly is a Grouping node that contains a set of CADAssembly or CADPart nodes

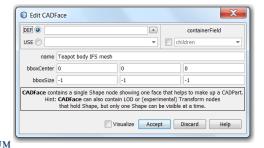
- Thus assembly consists of sub-assemblies and parts
- · Design is not intended to hold other content



CADPart

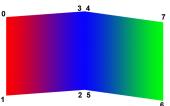
CADPart is a Grouping node that contains one or more CADFace nodes to make a Part

- · Also includes Transform fields to locate children
- · Design is not intended to hold other content



CADFace

CADFace is a Grouping node that contains a single Shape (or else an LOD node showing one Shape)


- · Holds geometry representing a face of a part
- If child LOD, each level should be single Shape
- Experimental: contain Transform, but still only one Shape
- · Design is not intended to hold other content



Additional nodes

Quadset and IndexedQuadSet are straightforward and covered in X3D For Web Authors chapter 13

OrthoViewpoint node is covered in X3D For Web Authors chapter 4

 An orthographic view has all projected lines parallel to the projector from centerOfRotation to position Applications

CAD applications for X3D

web 3D

CONSORTIUM

Is X3D CAD heavy or light?

from Professor Soonhung Han of KAIST:

Heavy with data for design changes; B-rep Diverse functions Light format for web browsing; Polygons Limited functions

This is the right question to explore. The way to answer it is through testing.

back to Table of Contents

CAD Working Group Web3D Consortium

Next steps, work in progress

Next steps for CAD working group

Lots of progress has occurred...

- · CAD Working Group reactivated
- Example CAD models => scenes in version control
- · X3D Validator and quality assurance testing

Lots of work still to be done!

- · Compressed Binary Encoding (CBE) implementation interoperability
 - · Test corpus to measure size & speed improvements
- Are B-REP definitions correct? Are B-REPS best suited for CADmodel conversion tools, or should authors use them?
 - Do the B-REP renderers work? B-REP tesselation to polygon export in our converters? Constructive solid geometry (CSG)?
- · Demonstrate Parametric History approach, capability in tool set

Steady progress, going forward together

Next-step progress for CAD: links

- X3D CAD Executive Summary
- CAD Working Group Public Wiki
- http://www.web3d.org/x3d/wiki/index.php/X3D_CAD
- Planned improvements for X3D v3.4
- X3D CAD Macro-Parametric Approach

Additional Resources

web | 3D | CONSORTIUM

Resources 1

CAD Working Group pages

- http://www.web3d.org/realtime-3d/working-groups/computer-aided-design-cad
- http://www.web3d.org/x3d/wiki/index.php/X3D_CAD

Conversion and Translation Tools

• http://www.web3d.org/x3d/content/examples/X3dResources.html#Conversions

CAD Examples: X3D Basic Archives

• http://www.web3d.org/x3d/content/examples/Basic/CAD

Browsers and players

• Player support for X3D components wiki has latest list

X3D-Edit authoring tool

• https://savage.nps.edu/X3D-Edit

Resources 2

Kshell IGES to X3D converter

• http://www.kshell.com/pages/x3d_cad

Stamp X3D Model

StampX3dLetters.x3d and StampX3dLetters.html

130

 Online 3D printing: order a Stamp X3D Model built by Shapeways!

Chapter Summary

web | 3D | CONSORTIUM

Chapter Summary

CAD component allows structuring X3D models to match common structure within CAD models

CAD distillation filters and X3D binary encoding allow large-model reduction to practical levels

· Long-running work in progress

Multiple technical challenges are steadily being addressed

Ongoing work to build repeatable, royalty-free results available for broad use on the Web

Suggested exercises

Test and adapt provided example scenes

Perform geometry reduction of a large mesh

• Using X3D-Edit, Xj3D, MeshLab or any other tool

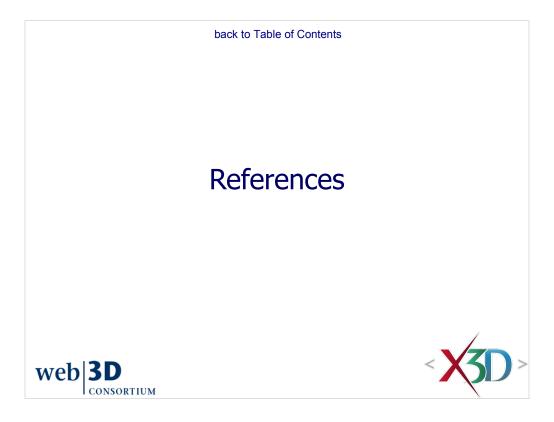
Repurpose a CAD model using a conversion tool, simplify X3D model further using CDF filters, maintain basic structure using CAD nodes

Add animation to model, publish to Web $web \mid \mathbf{3D}$

Sponsor, partnership opportunities

Numerous government agencies might benefit if stable Web modeling and delivery was possible for CAD engineering models

• Training, simulation, visualization, outreach, etc.


Most CAD companies selling authoring tools are not highly incentivized to be interoperable

Numerous incompatible CAD formats

Numerous sponsor, partnership opportunities are available to advance X3D CAD capabilities

Please contact Web3D CAD Working Group to discuss

References 1

X3D: Extensible 3D Graphics for Web Authors by Don Brutzman and Leonard Daly, Morgan Kaufmann Publishers, April 2007, 468 pages.

http://x3dGraphics.com

X3D Resources and X3D Basic Examples Archive

- http://www.web3d.org/x3d/content/examples/X3dResources.html
- http://www.web3d.org/x3d/content/examples/Basic/DistributedInteractiveSimulation

References 2

X3D-Edit Authoring Tool

https://savage.nps.edu/X3D-Edit

X3D Scene Authoring Hints

• http://x3dgraphics.com/examples/X3dSceneAuthoringHints.html

X3D Graphics Specification

- http://www.web3d.org/x3d/specifications
- Also available as help pages within X3D-Edit

References 3

Xj3D Converter shell scripts

• http://www.Xj3D.org

MeshLab tool for 3D triangular meshes

• http://meshlab.sourceforge.net

Contact

Don Brutzman

brutzman@nps.edu

http://faculty.nps.edu/brutzman

Code USW/Br, Naval Postgraduate School Monterey California 93943-5000 USA 1.831.656.2149 voice

Attribution-Noncommercial-Share Alike 3.0 Unported

You are free:

- * to Share to copy, distribute and transmit the work
- * to Remix to adapt the work

Under the following conditions:

* Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).

Attribute this work: What does "Attribute this work" mean?

The page you came from contained embedded licensing metadata, including how the creator wishes to be attributed for re-use. You can use the HTML here to cite the work. Doing so will also include metadata on your page so that others can find the original work as well.

- * Noncommercial. You may not use this work for commercial purposes.
- * Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.
- * For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to this web page.
- * Any of the above conditions can be waived if you get permission from the copyright holder.
 - * Nothing in this license impairs or restricts the author's moral rights.

Open-source license for X3D-Edit software and X3D example scenes

http://www.web3d.org/x3d/content/examples/license.html

Copyright (c) 1995-2013 held by the author(s). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
 following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the names of the Naval Postgraduate School (NPS) Modeling Virtual Environments and Simulation (MOVES) Institute nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

License available at

http://www.web3d.org/x3d/content/examples/license.txt http://www.web3d.org/x3d/content/examples/license.html

Good references on open source:

Andrew M. St. Laurent, *Understanding Open Source and Free Software Licensing*, O'Reilly Publishing, Sebastopol California, August 2004. http://oreilly.com/catalog/9780596005818/index.html

Herz, J. C., Mark Lucas, John Scott, *Open Technology Development: Roadmap Plan*, Deputy Under Secretary of Defense for Advanced Systems and Concepts, Washington DC, April 2006. http://handle.dtic.mil/100.2/ADA450769

