
1

X3D Graphics for Web Authors

Chapter 8

User Interactivity

Nobody knows the kind of trouble we're in.
Nobody seems to think it all might happen again.

Gram Parsons, “One Hundred Years from Now”

http://en.wikipedia.org/wiki/Byrds
http://en.wikipedia.org/wiki/Sweetheart_of_the_Rodeo
http://en.wikipedia.org/wiki/Jo_Mora
http://en.wikipedia.org/wiki/Gram_Parsons

2

Contents

Chapter Overview

Concepts

X3D Nodes and Examples

Chapter Summary and Suggested Exercises

Additional Resources and References

file:///C:/My%20Documents/X3D/X3dForWebAuthors/x3dGraphics.com/slidesets/X3dForWebAuthors/%23SuggestedExercises
file:///C:/My%20Documents/X3D/X3dForWebAuthors/x3dGraphics.com/slidesets/X3dForWebAuthors/%23SuggestedExercises

3

Chapter Overview

4

Overview: User Interactivity

User interactivity is initiated via sensor nodes,
which capture user inputs and are hooked up
to provide appropriate responses
• TouchSensor senses pointing device (mouse, etc.)
• PlaneSensor is a drag sensor that converts x-y

pointer motion to move objects in a plane
• CylinderSensor and SphereSensor are drag sensors

that convert x-y pointer motion to rotate objects
• KeySensor and StringSensor capture keyboard input

Interactivity sensors initiate animation chains

5

Related nodes

Chapter 4, Viewing and Navigation nodes
• Anchor: pointing device

• Selects another Viewpoint or loads another scene
• Show description when pointing device is over geometry

• Billboard rotates child geometry to face user
• Collision reports if viewer collides with geometry

Chapter 12, Environment Sensor and Sound
• LoadSensor reports when media asset is loaded
• ProximitySensor reports when user is in vicinity
• VisibilitySensor indicates when user's current

camera view can see sensed geometry

6

Concepts

back to Table of Contents

7

Importance of user interaction

Animated scenes are more interesting than static
unchanging geometry

X3D interaction consists of sensing user actions
and then prompting appropriate responses

Scenes that include behaviors which respond to
user direction and control are more lively

Freedom of navigation and interaction contribute
to user's sense of presence and immersion

Thus animation behaviors tend to be reactive
and declarative, responding to the user

8

Sensors produce events

Sensors detect various kinds of user interaction
and produce events to ROUTE within a scene

● Each sensor detects a certain kind of interaction,
then produces one or more events

Authors decide how the events describing user
interaction are interpreted and handled

● This approach allows great flexibility for authors

9

Using sensors in a scene

Three common design patterns (→ = ROUTE)

• Trigger (sensor) → Clock → Interpolator →
Target node

• Sensor → Target node

• Sensor → Script (adaptor) → Target node

10

Pointing devices

Pointing device is primary tool for user
interaction with geometry in a scene
• Mouse, Touchpad, touchscreen, or tracking stylus
• Arrow, Enter, other keys are allowed substitutes
• Trackball, data glove, game controller
• Tracking wand or other device in immersive 3D

environments (such as a cave)
• Eye trackers and other advanced devices possible

X3D sensors designed for use with any generic
pointing device, thus making scenes portable

11

Sensed geometry intersection, selection

Pointing devices communicate user's intended
direction, movement, and selection (if any)
• Browsers and viewers usually superimpose 2D icon

to indicate user's intended pointing direction
• 2D overlay icon may change to indicate selection

Sensors react to corresponding sibling and child
geometry in the scene graph
• Pointing at other geometry means sensor activation

no longer possible
• Usually one sensor must be deactivated before

another can become active

12

Common field: enabled

enabled is an inputOutput boolean field that
turns a sensor node on or off

● Thus allowing author to permit or disable flow of
user-driven events which drive other responses

● Set enabled='false' to disrupt an event chain

Regardless of whether enabled='true' a sensor
still needs a ROUTE connection from its
output, or else no interaction response occurs

13

Common field: isOver

isOver is an outputOnly boolean field that
reports when pointing at sensed geometry

● isOver true value sent when pointer is over shapes
● isOver false value sent when pointer icon is no

longer over shapes
● If selection occurred, isOver false doesn't occur until

after selection is released

Routing isOver values can enable animation
● Rapid sequencing on/off might remain a difficulty
● Take care that animation doesn't move viewpoint or

geometry out from under the pointing device

14

Common field: isActive

isActive is an outputOnly boolean field that
reports when sensor has received user input

● isActive true value sent when selection begins
● isActive false value sent when selection released
• Note that isActive true already occurs as a

prerequisite when a sensor is initially enabled

Routing isActive values can enable, disable
TimeSensor and other animation nodes

● Rapid sequencing on/off can be a difficulty, however
● BooleanFilter, BooleanToggle, BooleanTrigger also

useful: Chapter 9 Event Utilities and Scripting

15

Common field: description

Each sensor's description field alerts users to the
presence and intended purpose of each sensor
• Thus including a description is quite important,

otherwise user is left to guess about responses
• Nevertheless many authors forget to include

description, which inhibits interactivity

X3D Specification gives browsers flexibility about
how description strings are displayed
• Overlay text, window-border text, perhaps audio

16

Dragging

Dragging means to select (activate) a sensed
object, then to move the pointing device
while the sensor is still activated

This user action causes continuous generation of
output events while dragging motion occurs

• Click + drag + release = Select + hold + release

Several common fields
● enabled, description, isActive, isOver, touchTime

Three X3DDragSensorNode type sensors are
● CylinderSensor, PlaneSensor, SphereSensor

17

3D (6DOF) control using 2D devices

Selected objects are 3D, located in 3D space
• Which provides 6 degrees of freedom (DOF) for

3D object motion, e.g. (x, y, z, roll, pitch, yaw)

However most pointing devices only 2D control,
since only movements are left-right, up-down
• Mouse, touchpad or touch screen, keyboard, etc.

Must map 2D output device to 3D/6DOF motions
• Each drag sensor thus defines how 2D motion is

interpreted: surface of cylinder, plane, or sphere
• Hopefully authored in a manner intuitive to user

18

X3D Nodes and Examples

back to Table of Contents

19

TouchSensor node

TouchSensor affects adjacent geometry, provides
basic pointing-device contact interaction
• Sends isOver true event when first pointed at
• Sends isActive true event when selected
• Sends isActive false event when deselected
• Sends isOver false event when no longer pointed at

Selection is deliberate action by user, for example
• Mouse, touchpad, touchscreen: left-click button
• Keyboard: <Enter> key
• 3D wand: selection button

20

Sensed geometry grouping 1

All geometry that is a peer (or children of peers)
of the TouchSensor nodes can be sensed

Use a grouping node (Group, Transform, etc.) to
isolate sensed geometry of interest
• Don't want to make entire scene selectable,

otherwise interaction isn't very sophisticated

Can attach different sensors to self-explanatory
geometry for different tasks. Examples:
• Light switch isOver gives name, click to change
• Billboarded Text or buttons for multiple controls

21

Sensed geometry grouping 2

Separate sensed geometry from other shapes by
using grouping nodes

Next slide shows example excerpt
• Chapter04-ViewingNavigation/BindOperations.x3d

Scene structure for this example
• Viewpoints consuming, producing events
• Display geometry, no sensor peer
• Selectable geometry, TouchSensor peer
• Regular animation design pattern: TimeSensor,

Interpolator, target Script node, ROUTE connections

22

Chapter 4, BindOperations.x3d

Sensed group inside Transform node

Separate Group node
View #2
View #3
View #4

set_bind

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter04-ViewingNavigation/BindingOperations.x3d

23

Multiple TouchSensor nodes

Cannot sense just one part of grouped geometry
• Unless split out as separate groups of geometry,

then Transform-ed to look like single shape to user

Can use multiple TouchSensor nodes, ROUTEs
and event chains to accomplish multiple tasks

Can DEF, USE copies of single TouchSensor node,
allowing multiple shapes to trigger same action

If multiple TouchSensor nodes at same level or
above a given piece of geometry, nearest wins
• If tied at same distance, both activated at once

http://instantreality.de/documentation/nodetype
http://instantreality.de/documentation/nodetype/MultiTouchNavigator

24

output event touchTime

touchTime sends an SFTime output event
whenever sensed geometry is deselected

● Sent simultaneously with isActive false event

Three prerequisites must be met for touchTime:
1.Pointing device begins pointing at sensed geometry

 (generating isOver true event)
2.Pointing device is initially activated by user selection

 (generating isActive true event)
3.Pointing device is subsequently deactivated while

still pointing at the sensed geometry
(generating isActive false event)

25

output events hitPoint_changed,
hitNormal_changed, hitTexCoord_changed
hitPoint_changed

• sends output SFVec3f event providing 3D location
coordinates of selection point, referenced to local
coordinate system

hitNormal_changed
• sends output SFVec3f event providing normal

vector of underlying geometry at selection point

hitTexCoord_changed
• sends output SFVec2f event providing 2D (u, v)

coordinates of underlying texture at selection point

26

TouchSensor node X3D-Edit

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/TouchSensorPumpHouse.x3d

27

Example: opening doors

Interaction in 3D scenes doesn't always have to
be literal. It is easier to click on a door to
open it, rather than turning a door knob.

Next example compares TouchSensor selections
• Left door opens on initial selection (click)
• Right door opens on later deselection (unclick)

Key difference: isActive is first true, then false
• To fix: routing events through a BooleanFilter and

TimeTrigger can initiate TimeSensor appropriately
• These are Event Utility nodes, covered in Chapter 9

28

Two-door example X3D-Edit

set_rotation

set_rotation
DoorRight

value_changed

value_changed

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/Doors.x3d

29

TouchSensor tooltips

http://www.web3d.org/x3d/content/X3dTooltips.html#TouchSensor

30

PlaneSensor node

PlaneSensor converts x-y dragging motion by the
pointing device into lateral translation in plane
• 2-tuple motion converted to 3-tuple SFVec3f
• Motion is parallel to local z=0 plane (screen plane)

Activated by peer geometry in scene graph
• Sensor itself is not rendered, unless background

geometry or sensed shape itself has a planar side

Translation output values can follow a ROUTE
connection to parent Transform translation
• Or connect to another SFVec3f field elsewhere

31

PlaneSensor fields, events
• Sends isActive true event when selected
• Sends isActive false event when deselected
• minPosition, maxPosition constrain X-Y translation

to allowed planar region, defined as SFVec2f values
• Example: minPosition='-2 -2' maxPosition='2 2'

• offset holds latest (or initial) SFVec3f position value
• autoOffset='true' remembers prior translation prior

to resuming a new drag selection, otherwise
autoOffset='false' jumps, restarts at initial position

• translation_changed and trackPoint_changed are
the basic output events for sensor results

32

PlaneSensor node X3D-Edit

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/PlaneSensorPumpHouse.x3d

33

PlaneSensor tooltips

http://www.web3d.org/x3d/content/X3dTooltips.html#PlaneSensor

34

CylinderSensor node

CylinderSensor converts x-y dragging motion by
the pointing device into rotation about an axis
• 2-tuple motion converted to 4-tuple SFRotation
• Rotation restricted to local coordinate frame y-axis

Activated by peer geometry in scene graph
• Sensor itself is not rendered, unless sensed shape

is itself cylindrical

Rotation output values can follow a ROUTE
connection to parent Transform rotation
• Or connect to another SFRotation field elsewhere

CylinderSensor diskAngle and select point
determines tracking mode

User selects either end or
side of drag cylinder
• diskAngle measures

from axis to touch point
• Thus can adjust sensor

to match cylindrical
shape approximation

• Bearing angle is
measured from axis to
user's track point

https://savage.nps.edu/Savage/Tools/Animation/ArbitraryAxisCylinderSensorExamples.x3d

36

CylinderSensor fields, events
• Sends isActive true event when selected
• Sends isActive false event when deselected
• minAngle, maxAngle constrain the allowed rotation

• default values do need adjustment, always use radians
• Example: minAngle='-3.14159' maxAngle='-3.14159'

• offset holds latest (or initial) rotation value
• autoOffset='true' remembers prior rotation prior to

resuming a new drag selection, otherwise
autoOffset='false' jumps to restart at initial rotation

• rotation_changed and trackPoint_changed are the
basic output events for sensor results

37

CylinderSensor off-axis rotation design pattern 1

CylinderSensor rotates about the Y axis of local
coordinate frame
• No internal field provided for offsetting that axis
• Making rotation axis different than peer sensed

geometry can be tricky

Following scene-graph design pattern shows how
to rotate CylinderSensor about a different axis
• First rotate to desired axis, CylinderSensor is child
• Nest a second Transform rotation restoring original

Y-axis, place sensed geometry here as child

CylinderSensor off-axis rotation design pattern 2

39

CylinderSensor node X3D-Edit

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/CylinderSensorPumpHouse.x3d

40

CylinderSensor tooltips

http://www.web3d.org/x3d/content/X3dTooltips.html#CylinderSensor

41

SphereSensor node

SphereSensor converts x-y dragging motion by
the pointing device into an arbitration rotation
• 2-tuple motion converted to 4-tuple SFRotation
• Rotation about origin of local coordinate frame

Activated by peer geometry in scene graph
• Sensor itself is not rendered, unless corresponding

sensed shape itself happens to be spherical

Rotation output values can have ROUTE
connection to parent Transform rotation field
• Or connected to another SFRotation field elsewhere

42

SphereSensor fields, events
• Sends isActive true event when selected
• Sends isActive false event when deselected
• offset holds latest (or initial) rotation value
• autoOffset='true' remembers prior rotation prior to

resuming a new drag selection, otherwise
autoOffset='false' jumps to restart at initial rotation

• rotation_changed and trackPoint_changed are the
basic output events for sensor results

As with all sensors, includes description, enabled

43

SphereSensor node X3D-Edit

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/SphereSensor-Lefty.x3d

44

SphereSensor tooltips

http://www.web3d.org/x3d/content/X3dTooltips.html#SphereSensor

45

KeySensor node

KeySensor is a one-character-at-a-time interface,
capturing key presses from user's keyboard
• Helpful for selecting from menu choices
• Helpful for creating a special keyboard-driven

navigation interface
• Only gives key name, not precise shifted character

Control, alt, shift keys sent as separate events
• As are certain special “action keys”

Processing key events requires a Script node
• Covered in Chapter 9, Event Utilities and Scripting

46

KeySensor events 1
• Sends isActive true event when selected
• Sends isActive false event when deselected
• keyPress, keyRelease provide SFString value for the

specific key pressed (or released)
• Usually upper-case or primary key symbol only

• shiftKey, altKey, controlKey are SFBool binary values
indicating whether keys were pressed or released

KeySensor also has enabled field
• but not description since display is challenging

KeySensor events 2
• actionKeyPress, actionKeyRelease provide SFInt32

values when pressed or released

48

KeySensor node X3D-Edit

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/KeySensor-Lefty.x3d

49

keySensor.js X3D-Edit

50

KeySensor tooltips

http://www.web3d.org/x3d/content/X3dTooltips.html#KeySensor

51

StringSensor node, events

StringSensor provides a string-based interface to
the user's keyboard
• Each character key press is collected until <Enter>

key is returned, completing finalText string
• Intermediate string results (including deletions) also

available as user proceeds in enteredText string
• deletionAllowed is boolean field that enables

<Backspace>, <Delete> keys

StringSensor has isActive events, enabled field
• but not description since display is challenging

52

StringSensor node X3D-Edit

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/StringSensor.x3d

53

converter.js X3D-Edit

54

StringSensor tooltips

http://www.web3d.org/x3d/content/X3dTooltips.html#StringSensor

55

Example: user-interactivity sensor nodes

UserInteractivitySensorNodes.x3d
• Select (click and hold) TouchSensor Cone to

alternate Background nodes
• Select and drag PlaneSensor -- Box on the screen
• Select and drag to rotate CylinderSensor -- Cylinder
• Select and drag to spin SphereSensor -- Sphere

Keyboard inputs are also activated
• KeySensor indicates keyPress
• StringSensor shows finalText once <Enter> pressed
• Console shows enteredText (includes deletes if any)

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/UserInteractivitySensorNodes.x3d
http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/UserInteractivitySensorNodes.x3d
http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/UserInteractivitySensorNodes.x3d

56

SensorNodeExamples.x3d
snapshot

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/UserInteractivitySensorNodes.x3d

57

SensorNodeExamples.x3d X3D-Edit 1

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/UserInteractivitySensorNodes.x3d

58

SensorNodeExamples.x3d X3D-Edit 2

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/UserInteractivitySensorNodes.x3d

59

SensorNodeExamples.x3d X3D-Edit 3

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/UserInteractivitySensorNodes.x3d

60

Chapter Summary

back to Table of Contents

61

Summary: User Interactivity

User interactivity is initiated via sensor nodes,
which capture user inputs and are hooked up
to provide appropriate responses
• TouchSensor senses pointing device (mouse, etc.)
• PlaneSensor is a drag sensor that converts x-y

pointer motion to move objects in a plane
• CylinderSensor and SphereSensor are drag sensors

that convert x-y pointer motion to rotate objects
• KeySensor and StringSensor capture keyboard input

Interactivity sensors initiate animation chains

62

Suggested exercises

Illustrate and annotate ROUTE connections in an
animation scene graph (documenting 10 steps)
• Print out one of these scenes in landscape mode,

either using the X3dToXhtml.xslt stylesheet version
or Netbeans-provided 'Save as HTML' option.

• Then draw all ROUTE connections, label beginning
and end of each by name, type and accessType

• Best candidate: UserInteractivitySensorNodes.x3d

Draw animation chain diagrams to document
behaviors in your own example scenes
• Add use-case summaries about user intent

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/UserInteractivitySensorNodes.x3d
http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/UserInteractivitySensorNodes.x3d

63

Additional Resources

back to Table of Contents

64

ArbitraryAxisCylinderSensor Prototype

ArbitraryAxisCylinderSensor is a prototype that
simplifies the design pattern of aligning a
CylinderSensor about an arbitrary axis
• https://savage.nps.edu/Savage/Tools/Animation
• Prototype definition:

ArbitraryAxisCylinderSensorPrototype.x3d
• ProtoInstance examples:

ArbitraryAxisCylinderSensorExamples.x3d

Fields match those of CylinderSensor, plus:
• shiftRotationAxis, center, children, plus

show/scale/color/transparency of
CylinderSensorShape

https://savage.nps.edu/Savage/Tools/Animation
https://savage.nps.edu/Savage/Tools/Animation//ArbitraryAxisCylinderSensorPrototype.x3d
https://savage.nps.edu/Savage/Tools/Animation/ArbitraryAxisCylinderSensorExamples.x3d
https://savage.nps.edu/Savage/Tools/Animation
https://savage.nps.edu/Savage/Tools/Animation//ArbitraryAxisCylinderSensorPrototype.x3d
https://savage.nps.edu/Savage/Tools/Animation/ArbitraryAxisCylinderSensorExamples.x3d
https://savage.nps.edu/Savage/Tools/Animation/ArbitraryAxisCylinderSensorExamples.x3d

65

ArbitraryAxisCylinderSensor

https://savage.nps.edu/Savage/Tools/Animation/ArbitraryAxisCylinderSensorExamples.x3d

66

DoubleClickTouchSensor

DoubleClickTouchSensor is a prototype
alternative to TouchSensor that detects when a
user has rapidly selected an object twice
• https://savage.nps.edu/Savage/Tools/Animation
• Prototype definition:

DoubleClickTouchSensorPrototype.x3d
• ProtoInstance examples:

DoubleClickTouchSensorExample.x3d

Fields match those of TouchSensor, plus:
• maxDelayInterval allowed for distinguishing

between single and double click, in seconds

https://savage.nps.edu/Savage/Tools/Animation
https://savage.nps.edu/Savage/Tools/Animation/DoubleClickTouchSensorPrototype.x3d
https://savage.nps.edu/Savage/Tools/Animation/DoubleClickTouchSensorExample.x3d
https://savage.nps.edu/Savage/Tools/Animation
https://savage.nps.edu/Savage/Tools/Animation/DoubleClickTouchSensorPrototype.x3d
https://savage.nps.edu/Savage/Tools/Animation/DoubleClickTouchSensorExample.x3d
https://savage.nps.edu/Savage/Tools/Animation/DoubleClickTouchSensorExample.x3d

67

TimeDelaySensor Prototype

TimeDelaySensor is an alternative to TimeSensor
that includes a time delay before firing
• https://savage.nps.edu/Savage/Tools/Animation
• Prototype definition:

TimeDelaySensorPrototype.x3d
• ProtoInstance examples:

TimeDelaySensorExample.x3d

Fields match those of TimeSensor, plus:
• delayInterval, delayCompleteTime

https://savage.nps.edu/Savage/Tools/Animation
https://savage.nps.edu/Savage/Tools/Animation/TimeDelaySensorPrototype.x3d
https://savage.nps.edu/Savage/Tools/Animation/TimeDelaySensorExample.x3d
https://savage.nps.edu/Savage/Tools/Animation
https://savage.nps.edu/Savage/Tools/Animation/TimeDelaySensorPrototype.x3d
https://savage.nps.edu/Savage/Tools/Animation/TimeDelaySensorExample.x3d
https://savage.nps.edu/Savage/Tools/Animation/TimeDelaySensorExample.x3d
https://savage.nps.edu/Savage/Tools/Animation/TimeDelaySensorPrototype.x3d

68

TimeSensorEaseInEaseOut Prototype

TimeSensorEaseInEaseOut is an alternative to
TimeSensor with a slower ramp at beginning
and end of a cycle, thus smoothing transitions
• https://savage.nps.edu/Savage/Tools/Animation
• Prototype definition:

TimeSensorEaseInEaseOutPrototype.x3d
• ProtoInstance examples:

TimeSensorEaseInEaseOutExample.x3d

Fields match those of TimeSensor
• Slight linear slowdown for first and last 10%
• Slight linear speedup in between

https://savage.nps.edu/Savage/Tools/Animation
https://savage.nps.edu/Savage/Tools/Animation/TimeSensorEaseInEaseOutPrototype.x3d
https://savage.nps.edu/Savage/Tools/Animation/TimeSensorEaseInEaseOutExample.x3d
https://savage.nps.edu/Savage/Tools/Animation
https://savage.nps.edu/Savage/Tools/Animation/TimeSensorEaseInEaseOutPrototype.x3d
https://savage.nps.edu/Savage/Tools/Animation/TimeSensorEaseInEaseOutExample.x3d
https://savage.nps.edu/Savage/Tools/Animation/TimeSensorEaseInEaseOutExample.x3d

TimeSensorEaseInEaseOut snapshots

https://savage.nps.edu/Savage/Tools/Animation/TimeSensorEaseInEaseOutExample.x3d

70

References

back to Table of Contents

71

References 1

X3D: Extensible 3D Graphics for Web Authors
by Don Brutzman and Leonard Daly, Morgan
Kaufmann Publishers, April 2007, 468 pages.
• Chapter 8, User Interactivity
• http://x3dGraphics.com
• http://x3dgraphics.com/examples/X3dForWebAuthors

X3D Resources
• http://www.web3d.org/x3d/content/examples/X3dResources.html

http://x3dGraphics.com/
http://x3dgraphics.com/examples/X3dForWebAuthors
http://www.web3d.org/x3d/content/examples/X3dResources.html
http://x3dGraphics.com/
http://x3dgraphics.com/examples/X3dForWebAuthors
http://www.web3d.org/x3d/content/examples/X3dResources.html

72

References 2

X3D-Edit Authoring Tool
• https://savage.nps.edu/X3D-Edit

X3D Scene Authoring Hints
• http://x3dgraphics.com/examples/X3dSceneAuthoringHints.html

X3D Graphics Specification
• http://www.web3d.org/x3d/specifications
• Also available as help pages within X3D-Edit

https://savage.nps.edu/X3D-Edit
http://x3dgraphics.com/examples/X3dSceneAuthoringHints.html
http://www.web3d.org/x3d/specifications
https://savage.nps.edu/X3D-Edit
http://x3dgraphics.com/examples/X3dSceneAuthoringHints.html
http://www.web3d.org/x3d/specifications

73

References 3

VRML 2.0 Sourcebook by Andrea L. Ames,
David R. Nadeau, and John L. Moreland,
John Wiley & Sons, 1996.
• http://www.wiley.com/legacy/compbooks/vrml2sbk/cover/cover.htm
• http://www.web3d.org/x3d/content/examples/Vrml2.0Sourcebook

• Chapter 9 - Sensing Viewer

3D User Interfaces with Java3D by Jon
Barilleaux, Manning Publications, 2001.
• http://www.manning.com/barrilleaux
• http://java.sun.com/developer/Books/Java3D

http://www.wiley.com/legacy/compbooks/vrml2sbk/cover/cover.htm
http://www.web3d.org/x3d/content/examples/Vrml2.0Sourcebook
http://www.manning.com/barrilleaux
http://java.sun.com/developer/Books/Java3D
http://www.wiley.com/legacy/compbooks/vrml2sbk/cover/cover.htm
http://www.web3d.org/x3d/content/examples/Vrml2.0Sourcebook
http://www.manning.com/barrilleaux
http://java.sun.com/developer/Books/Java3D

74

References 4

3D User Interfaces: Theory and Practice by
Doug A. Bowman, Ernst Kruijff, Joseph J.
LaViola Jr. and Ivan Poupyrev,
Addison Wesley, 2005.
• http://www.3dui.org
• http://people.cs.vt.edu/~bowman/3dui.org/3D UI Book.html

Understanding Virtual Reality: Interface,
Application and Design by Bill Sherman
and Alan Craig, Morgan Kaufmann, 2003.

• http://www.immersence.com/publications/2003/2003-WSherman.html

http://www.3dui.org/
http://people.cs.vt.edu/~bowman/3dui.org/3D%20UI%20Book.html
http://www.immersence.com/publications/2003/2003-WSherman.html
http://www.3dui.org/
http://people.cs.vt.edu/~bowman/3dui.org/3D%20UI%20Book.html
http://www.immersence.com/publications/2003/2003-WSherman.html

75

Conferences 1

ACM SIGGRAPH
• Special Interest Group on Graphics is the leading

professional society for computer graphics and
interactive techniques

• http://www.siggraph.org

ACM SIGCHI
• Special Interest Group on Computer-Human

Interaction, brings together people working on the
design, evaluation, implementation, and study of
interactive computing systems for human use

• http://www.sigchi.org

http://www.siggraph.org/
http://www.sigchi.org/
http://www.siggraph.org/
http://www.sigchi.org/

Conferences 2

IEEE Symposium on 3D User Interfaces (3DUI)
• http://conferences.computer.org/3dui

IEEE Symposium on Virtual Reality (VR)
• http://conferences.computer.org/vr

Web3D Symposium
• In cooperation with Web3D Consortium,

ACM SIGGRAPH and Eurographics
• http://www.web3d2009.org

http://conferences.computer.org/3dui
http://conferences.computer.org/vr
http://www.web3D.org/
http://www.siggraph.org/
http://www.web3d2009.org/
http://conferences.computer.org/3dui
http://conferences.computer.org/vr
http://www.web3D.org/
http://www.siggraph.org/
http://www.web3d2009.org/

77

Don Brutzman

brutzman@nps.edu

http://faculty.nps.edu/brutzman

Code USW/Br, Naval Postgraduate School
Monterey California 93943-5000 USA

1.831.656.2149 voice

Contact

mailto:brutzman@nps.edu
http://faculty.nps.edu/brutzman
mailto:brutzman@nps.edu
http://faculty.nps.edu/brutzman

CGEMS, SIGGRAPH, Eurographics

The Computer Graphics Educational Materials
Source(CGEMS) site is designed for educators
• to provide a source of refereed high-quality content
• as a service to the Computer Graphics community
• freely available, directly prepared for classroom use
• http://cgems.inesc.pt

X3D for Web Authors recognized by CGEMS! ☺
• Book materials: X3D-Edit tool, examples, slidesets
• Received jury award for Best Submission 2008

CGEMS supported by SIGGRAPH, Eurographics

http://cgems.inesc.pt/
http://cgems.inesc.pt/
http://www.siggraph.org/
http://www.eg.org/
http://cgems.inesc.pt/
http://cgems.inesc.pt/
http://www.siggraph.org/
http://www.eg.org/
http://cgems.inesc.pt/
http://cgems.inesc.pt/authors/ListModules.aspx
http://cgems.inesc.pt/EditorialPolicy.htm

Creative Commons open-source license
http://creativecommons.org/licenses/by-nc-sa/3.0

http://creativecommons.org/licenses/by-nc-sa/3.0
http://creativecommons.org/licenses/by-nc-sa/3.0

Open-source license
for X3D-Edit software and X3D example scenes

http://www.web3d.org/x3d/content/examples/license.html

Copyright (c) 1995-2013 held by the author(s). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the names of the Naval Postgraduate School (NPS) Modeling Virtual Environments and Simulation
(MOVES) Institute nor the names of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

http://www.web3d.org/x3d/content/examples/license.html
http://www.web3d.org/x3d/content/examples/license.html
http://www.web3d.org/x3d/content/examples/license.txt
http://www.web3d.org/x3d/content/examples/license.html
http://oreilly.com/catalog/9780596005818/index.html
http://handle.dtic.mil/100.2/ADA450769

Chapter 8 - User Interactivity 1

1

X3D Graphics for Web Authors

Chapter 8

User Interactivity

Nobody knows the kind of trouble we're in.
Nobody seems to think it all might happen again.

Gram Parsons, “One Hundred Years from Now”

Listen to one of the first (and perhaps still greatest) country rock albums of all time by
the Byrds: Sweetheart of the Rodeo, 1968. The cover is by Monterey California artist
Jo Mora and was used for the Salinas Rodeo. “One Hundred Years from Now” is
among Gram Parson's best songs.

It's fun to take the long view when thinking about X3D.

One Hundred Years from Now by Gram Parsons

One hundred years from this day
Will the people still feel this way
Still say the things that they're saying right now?
Everyone said I'd hurt you
They said I'd desert you
If I go away, you know I'm gonna get back somehow

Nobody knows what kind of trouble we're in
Nobody seems to think it all might happen again

One hundred years from this time
Would anybody change their mind
And find out one thing or two about life?
But people are always talking
You know they're always talking
Everybody's so wrong that I know it's gonna work out right

Chapter 8 - User Interactivity 2

2

Contents

Chapter Overview

Concepts

X3D Nodes and Examples

Chapter Summary and Suggested Exercises

Additional Resources and References

Chapter 8 - User Interactivity 3

3

Chapter Overview

Chapter 8 - User Interactivity 4

4

Overview: User Interactivity

User interactivity is initiated via sensor nodes,
which capture user inputs and are hooked up
to provide appropriate responses
• TouchSensor senses pointing device (mouse, etc.)
• PlaneSensor is a drag sensor that converts x-y

pointer motion to move objects in a plane
• CylinderSensor and SphereSensor are drag sensors

that convert x-y pointer motion to rotate objects
• KeySensor and StringSensor capture keyboard input

Interactivity sensors initiate animation chains

Dragging is the movement of a selected object using the pointing device, a capability
provided by the drag sensors.

Animation chains are covered in Chapter 7, Event Animation and Interpolation.

Chapter 8 - User Interactivity 5

5

Related nodes

Chapter 4, Viewing and Navigation nodes
• Anchor: pointing device

• Selects another Viewpoint or loads another scene
• Show description when pointing device is over geometry

• Billboard rotates child geometry to face user
• Collision reports if viewer collides with geometry

Chapter 12, Environment Sensor and Sound
• LoadSensor reports when media asset is loaded
• ProximitySensor reports when user is in vicinity
• VisibilitySensor indicates when user's current

camera view can see sensed geometry

User Interactivity nodes directly follow the event model presented in Chapter 7.

Chapter 8 - User Interactivity 6

6

Concepts

back to Table of Contents

Chapter 8 - User Interactivity 7

7

Importance of user interaction

Animated scenes are more interesting than static
unchanging geometry

X3D interaction consists of sensing user actions
and then prompting appropriate responses

Scenes that include behaviors which respond to
user direction and control are more lively

Freedom of navigation and interaction contribute
to user's sense of presence and immersion

Thus animation behaviors tend to be reactive
and declarative, responding to the user

There is a large body of work in 3D user interaction. See the Additional Resources
section.

Chapter 8 - User Interactivity 8

8

Sensors produce events

Sensors detect various kinds of user interaction
and produce events to ROUTE within a scene

● Each sensor detects a certain kind of interaction,
then produces one or more events

Authors decide how the events describing user
interaction are interpreted and handled

● This approach allows great flexibility for authors

TODO Add route diagram here...

Chapter 8 - User Interactivity 9

9

Using sensors in a scene

Three common design patterns (→ = ROUTE)

• Trigger (sensor) → Clock → Interpolator →
Target node

• Sensor → Target node

• Sensor → Script (adaptor) → Target node

TODO add figure

Chapter 8 - User Interactivity 10

10

Pointing devices

Pointing device is primary tool for user
interaction with geometry in a scene
• Mouse, Touchpad, touchscreen, or tracking stylus
• Arrow, Enter, other keys are allowed substitutes
• Trackball, data glove, game controller
• Tracking wand or other device in immersive 3D

environments (such as a cave)
• Eye trackers and other advanced devices possible

X3D sensors designed for use with any generic
pointing device, thus making scenes portable

Very different from most programming approaches...

Chapter 8 - User Interactivity 11

11

Sensed geometry intersection, selection

Pointing devices communicate user's intended
direction, movement, and selection (if any)
• Browsers and viewers usually superimpose 2D icon

to indicate user's intended pointing direction
• 2D overlay icon may change to indicate selection

Sensors react to corresponding sibling and child
geometry in the scene graph
• Pointing at other geometry means sensor activation

no longer possible
• Usually one sensor must be deactivated before

another can become active

Chapter 8 - User Interactivity 12

12

Common field: enabled

enabled is an inputOutput boolean field that
turns a sensor node on or off

● Thus allowing author to permit or disable flow of
user-driven events which drive other responses

● Set enabled='false' to disrupt an event chain

Regardless of whether enabled='true' a sensor
still needs a ROUTE connection from its
output, or else no interaction response occurs

For author: Get ready...

Chapter 8 - User Interactivity 13

13

Common field: isOver

isOver is an outputOnly boolean field that
reports when pointing at sensed geometry

● isOver true value sent when pointer is over shapes
● isOver false value sent when pointer icon is no

longer over shapes
● If selection occurred, isOver false doesn't occur until

after selection is released

Routing isOver values can enable animation
● Rapid sequencing on/off might remain a difficulty
● Take care that animation doesn't move viewpoint or

geometry out from under the pointing device

For user: Get set...

Chapter 8 - User Interactivity 14

14

Common field: isActive

isActive is an outputOnly boolean field that
reports when sensor has received user input

● isActive true value sent when selection begins
● isActive false value sent when selection released
• Note that isActive true already occurs as a

prerequisite when a sensor is initially enabled

Routing isActive values can enable, disable
TimeSensor and other animation nodes

● Rapid sequencing on/off can be a difficulty, however
● BooleanFilter, BooleanToggle, BooleanTrigger also

useful: Chapter 9 Event Utilities and Scripting

For user: Go!!

Chapter 8 - User Interactivity 15

15

Common field: description

Each sensor's description field alerts users to the
presence and intended purpose of each sensor
• Thus including a description is quite important,

otherwise user is left to guess about responses
• Nevertheless many authors forget to include

description, which inhibits interactivity

X3D Specification gives browsers flexibility about
how description strings are displayed
• Overlay text, window-border text, perhaps audio

Chapter 8 - User Interactivity 16

16

Dragging

Dragging means to select (activate) a sensed
object, then to move the pointing device
while the sensor is still activated

This user action causes continuous generation of
output events while dragging motion occurs

• Click + drag + release = Select + hold + release

Several common fields
● enabled, description, isActive, isOver, touchTime

Three X3DDragSensorNode type sensors are
● CylinderSensor, PlaneSensor, SphereSensor

Chapter 8 - User Interactivity 17

17

3D (6DOF) control using 2D devices

Selected objects are 3D, located in 3D space
• Which provides 6 degrees of freedom (DOF) for

3D object motion, e.g. (x, y, z, roll, pitch, yaw)

However most pointing devices only 2D control,
since only movements are left-right, up-down
• Mouse, touchpad or touch screen, keyboard, etc.

Must map 2D output device to 3D/6DOF motions
• Each drag sensor thus defines how 2D motion is

interpreted: surface of cylinder, plane, or sphere
• Hopefully authored in a manner intuitive to user

6DOF = six degrees of freedom, positional and rotational: x y z roll pitch yaw

Each of the dragging sensor nodes (CylinderSensor, PlaneSensor, SphereSensor)
describe how they map 2D mouse motion (left-right, up-down) into 3D 6DOF space.

Chapter 8 - User Interactivity 18

18

X3D Nodes and Examples

back to Table of Contents

Chapter 8 - User Interactivity 19

19

TouchSensor node

TouchSensor affects adjacent geometry, provides
basic pointing-device contact interaction
• Sends isOver true event when first pointed at
• Sends isActive true event when selected
• Sends isActive false event when deselected
• Sends isOver false event when no longer pointed at

Selection is deliberate action by user, for example
• Mouse, touchpad, touchscreen: left-click button
• Keyboard: <Enter> key
• 3D wand: selection button

A change in pointer position is needed for TouchSensor to operate.

If the geometry or camera view is animated and the geometry moves out from under
the pointer, no isOver false event is sent. The pointing-device cursor icon must be
moved by the user off of the selected geometry in order to send an isOver false event.

So following the initial isOver='true' then isActive='true' event pair shown on the slide,
it is possible to have a slightly different order: isOver='false' then isActive='false' iff the
user moves off of the selected geometry while still selected.

Chapter 8 - User Interactivity 20

20

Sensed geometry grouping 1

All geometry that is a peer (or children of peers)
of the TouchSensor nodes can be sensed

Use a grouping node (Group, Transform, etc.) to
isolate sensed geometry of interest
• Don't want to make entire scene selectable,

otherwise interaction isn't very sophisticated

Can attach different sensors to self-explanatory
geometry for different tasks. Examples:
• Light switch isOver gives name, click to change
• Billboarded Text or buttons for multiple controls

The Group node is an excellent way to isolate the effectiveness of a sensor to only be
affected by a certain set of nodes.

Chapter 8 - User Interactivity 21

21

Sensed geometry grouping 2

Separate sensed geometry from other shapes by
using grouping nodes

Next slide shows example excerpt
• Chapter04-ViewingNavigation/BindOperations.x3d

Scene structure for this example
• Viewpoints consuming, producing events
• Display geometry, no sensor peer
• Selectable geometry, TouchSensor peer
• Regular animation design pattern: TimeSensor,

Interpolator, target Script node, ROUTE connections

Chapter 8 - User Interactivity 22

22

Chapter 4, BindOperations.x3d

Sensed group inside Transform node

Separate Group node
View #2
View #3
View #4

set_bind

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter04-ViewingNavigation/BindingOperations.x3d

Chapter 8 - User Interactivity 23

Note that multiple independent TouchSensor nodes are not the same as a
simultaneous multiple-touch sensor capability.

Currently X3D does not have any multi-touch (multi-hand gesture) nodes defined.
Nevertheless this remains an active area of research.

• The InstantReality X3D viewer team has successfully designed and
implemented multi-touch sensor capabilties. This is experimental work.

• http://instantreality.de/documentation/nodetype

• http://instantreality.de/documentation/nodetype/MultiTouchNavigator

23

Multiple TouchSensor nodes

Cannot sense just one part of grouped geometry
• Unless split out as separate groups of geometry,

then Transform-ed to look like single shape to user

Can use multiple TouchSensor nodes, ROUTEs
and event chains to accomplish multiple tasks

Can DEF, USE copies of single TouchSensor node,
allowing multiple shapes to trigger same action

If multiple TouchSensor nodes at same level or
above a given piece of geometry, nearest wins
• If tied at same distance, both activated at once

Chapter 8 - User Interactivity 24

24

output event touchTime

touchTime sends an SFTime output event
whenever sensed geometry is deselected

● Sent simultaneously with isActive false event

Three prerequisites must be met for touchTime:
1.Pointing device begins pointing at sensed geometry

 (generating isOver true event)
2.Pointing device is initially activated by user selection

 (generating isActive true event)
3.Pointing device is subsequently deactivated while

still pointing at the sensed geometry
(generating isActive false event)

Because isActive false and touchTime events are sent simultaneously after meeting
the same user-interaction preconditions, it is convenient to use

• isActive for destination fields that need boolean inputs (such as a sensor's
enabled field)

• touchTime for destination fields that need SFTime inputs (such as a
TimeSensor node's set_startTime field)

It is good design that requires a user to keep the pointer on the selected geometry
before deselecting and generating a touchTime event. This allows a user to change
their mind after initial (isActive true) selection, by moving the pointer off of the sensed
geometry before releasing the selection. Example sequence of events:

• User selects some sensed object with pointing device

• isActive true event sent

• User decides that selecting the object is not desirable, and so moves the
pointer off of the object before deselecting

• isActive false event is still sent, but no corresponding touchTime event is sent

As we shall see, it is possible to create event-animation logic that takes advantage of
this difference.

Chapter 8 - User Interactivity 25

25

output events hitPoint_changed,
hitNormal_changed, hitTexCoord_changed
hitPoint_changed

• sends output SFVec3f event providing 3D location
coordinates of selection point, referenced to local
coordinate system

hitNormal_changed
• sends output SFVec3f event providing normal

vector of underlying geometry at selection point

hitTexCoord_changed
• sends output SFVec2f event providing 2D (u, v)

coordinates of underlying texture at selection point

The local coordinate system is determined by the combined translation, rotation and
scaling effects of the Transform nodes that are parent nodes for the geometry of
interest. This is often referred to as the transformation hierarchy.

Normal vectors are similarly pointing in a direction that is relative to the local
coordinate system.

Texture coordinates are independent of the local coordinate system, only referring to
(u,v) coordinate values which range from 0 to 1 along each axis of a texture image.
Texture coordinates are described in Chapter 5, Appearance Material and Textures.

Chapter 8 - User Interactivity 26

26

TouchSensor node X3D-Edit

Figure 8.2, page 230, X3D for Web Authors

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/TouchSensorPumpHouse.x3d

Chapter 8 - User Interactivity 27

27

Example: opening doors

Interaction in 3D scenes doesn't always have to
be literal. It is easier to click on a door to
open it, rather than turning a door knob.

Next example compares TouchSensor selections
• Left door opens on initial selection (click)
• Right door opens on later deselection (unclick)

Key difference: isActive is first true, then false
• To fix: routing events through a BooleanFilter and

TimeTrigger can initiate TimeSensor appropriately
• These are Event Utility nodes, covered in Chapter 9

Chapter 8 - User Interactivity 28

28

Two-door example X3D-Edit

set_rotation

set_rotation
DoorRight

value_changed

value_changed

Figure 8.1, page 229, X3D for Web Authors

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/Doors.x3d

The following snapshots show animation results after clicking on (selecting) each door.

Chapter 8 - User Interactivity 29

29

TouchSensor tooltips

http://www.web3d.org/x3d/content/X3dTooltips.html#TouchSensor

Chapter 8 - User Interactivity 30

30

PlaneSensor node

PlaneSensor converts x-y dragging motion by the
pointing device into lateral translation in plane
• 2-tuple motion converted to 3-tuple SFVec3f
• Motion is parallel to local z=0 plane (screen plane)

Activated by peer geometry in scene graph
• Sensor itself is not rendered, unless background

geometry or sensed shape itself has a planar side

Translation output values can follow a ROUTE
connection to parent Transform translation
• Or connect to another SFVec3f field elsewhere

Chapter 8 - User Interactivity 31

31

PlaneSensor fields, events
• Sends isActive true event when selected
• Sends isActive false event when deselected
• minPosition, maxPosition constrain X-Y translation

to allowed planar region, defined as SFVec2f values
• Example: minPosition='-2 -2' maxPosition='2 2'

• offset holds latest (or initial) SFVec3f position value
• autoOffset='true' remembers prior translation prior

to resuming a new drag selection, otherwise
autoOffset='false' jumps, restarts at initial position

• translation_changed and trackPoint_changed are
the basic output events for sensor results

Default values minPosition='0 0' maxPosition='-1 -1' are contradictory (minimum
values are greater than corresponding maximum values), which results in the
PlaneSensor being unconstrained.

These constraints are helpful for guiding the user to make reasonable adjustments,
rather than dragging something off into the far distance somewhere.

Pay close attention to user viewpoint and perspective across the full range of possible
movement, so that dragged geometry remains visible and accessible for further
adjustment.

Linear movement can be achieved by setting either the min/max X or else min/max Z
constraints to the same value. This is done in the next example,
PlaneSensorPumpHouse.x3d.

As with all sensors, PlaneSensor includes description and enabled fields.

Chapter 8 - User Interactivity 32

32

PlaneSensor node X3D-Edit

Figure 8.3, page 233, X3D for Web Authors

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/PlaneSensorPumpHouse.x3d

Chapter 8 - User Interactivity 33

33

PlaneSensor tooltips

http://www.web3d.org/x3d/content/X3dTooltips.html#PlaneSensor

Chapter 8 - User Interactivity 34

34

CylinderSensor node

CylinderSensor converts x-y dragging motion by
the pointing device into rotation about an axis
• 2-tuple motion converted to 4-tuple SFRotation
• Rotation restricted to local coordinate frame y-axis

Activated by peer geometry in scene graph
• Sensor itself is not rendered, unless sensed shape

is itself cylindrical

Rotation output values can follow a ROUTE
connection to parent Transform rotation
• Or connect to another SFRotation field elsewhere

PlaneSensor gets from X-Y values to X-Y-Z values by simply holding Z to equal 0.

Chapter 8 - User Interactivity 35

CylinderSensor diskAngle and select point
determines tracking mode

User selects either end or
side of drag cylinder
• diskAngle measures

from axis to touch point
• Thus can adjust sensor

to match cylindrical
shape approximation

• Bearing angle is
measured from axis to
user's track point

Figure 8.4, p. 236, X3D for Web Authors

User selection with pointing device defines the track point. The vector angle of the
track point relative to the diskAngle parameter determines whether CylinderSensor
responds in end-cap tracking mode, or cylinder-wall tracking mode.

Each mode has a slightly different way of responding to user dragging motions,
making response more intuitive if there is a good match to the geometry.

CylinderSensor can be forced to always operate in end-cap mode by setting
diskAngle='1.5707' (π/2 radians), which is useful to emulate turning of knobs.

CylinderSensor can be forced to always operate in cylinder-wall sides mode by setting
diskAngle='0' which is useful to emulate a thumbwheel rotation.

Angle relationships are measured as SFFloat radian values, while node output field
rotation_changed is SFRotation.

The cylinder shown in the above diagram is typically invisible and describes the
mathematical model of the sensor response. If the actual sensed geometry is not
particularly cylindrical in shape, sometimes superimposing a semitransparent cylinder
can make the reaction more obvious. For example prototypes, see

https://savage.nps.edu/Savage/Tools/Animation/ArbitraryAxisCylinderSensorExamples.x3d

Chapter 8 - User Interactivity 36

36

CylinderSensor fields, events
• Sends isActive true event when selected
• Sends isActive false event when deselected
• minAngle, maxAngle constrain the allowed rotation

• default values do need adjustment, always use radians
• Example: minAngle='-3.14159' maxAngle='-3.14159'

• offset holds latest (or initial) rotation value
• autoOffset='true' remembers prior rotation prior to

resuming a new drag selection, otherwise
autoOffset='false' jumps to restart at initial rotation

• rotation_changed and trackPoint_changed are the
basic output events for sensor results

As with all sensors, CylinderSensor includes description and enabled fields.

Chapter 8 - User Interactivity 37

37

CylinderSensor off-axis rotation design pattern 1

CylinderSensor rotates about the Y axis of local
coordinate frame
• No internal field provided for offsetting that axis
• Making rotation axis different than peer sensed

geometry can be tricky

Following scene-graph design pattern shows how
to rotate CylinderSensor about a different axis
• First rotate to desired axis, CylinderSensor is child
• Nest a second Transform rotation restoring original

Y-axis, place sensed geometry here as child

This pattern works because a Sensor node acts upon all of its peers, and all of its
peers' children.

Essentially both CylinderSensor and geometry are rotated to the new angle of interest,
than the geometry is rotated back to its original orientation.

Chapter 8 - User Interactivity 38

CylinderSensor off-axis rotation design pattern 2

Figure 8.6, p. 238, X3D for Web Authors

Note that the CylinderSensor is nested within the animated Transform, making the
rotation changes an interesting feedback loop.

Chapter 8 - User Interactivity 39

39

CylinderSensor node X3D-Edit

Figure 8.5, p. 237, X3D for Web Authors

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/CylinderSensorPumpHouse.x3d

Chapter 8 - User Interactivity 40

40

CylinderSensor tooltips

http://www.web3d.org/x3d/content/X3dTooltips.html#CylinderSensor

Chapter 8 - User Interactivity 41

41

SphereSensor node

SphereSensor converts x-y dragging motion by
the pointing device into an arbitration rotation
• 2-tuple motion converted to 4-tuple SFRotation
• Rotation about origin of local coordinate frame

Activated by peer geometry in scene graph
• Sensor itself is not rendered, unless corresponding

sensed shape itself happens to be spherical

Rotation output values can have ROUTE
connection to parent Transform rotation field
• Or connected to another SFRotation field elsewhere

Chapter 8 - User Interactivity 42

42

SphereSensor fields, events
• Sends isActive true event when selected
• Sends isActive false event when deselected
• offset holds latest (or initial) rotation value
• autoOffset='true' remembers prior rotation prior to

resuming a new drag selection, otherwise
autoOffset='false' jumps to restart at initial rotation

• rotation_changed and trackPoint_changed are the
basic output events for sensor results

As with all sensors, includes description, enabled

Chapter 8 - User Interactivity 43

43

SphereSensor node X3D-Edit

Figure 8.7, p. 241, X3D for Web Authors

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/SphereSensor-Lefty.x3d

Chapter 8 - User Interactivity 44

44

SphereSensor tooltips

http://www.web3d.org/x3d/content/X3dTooltips.html#SphereSensor

Chapter 8 - User Interactivity 45

45

KeySensor node

KeySensor is a one-character-at-a-time interface,
capturing key presses from user's keyboard
• Helpful for selecting from menu choices
• Helpful for creating a special keyboard-driven

navigation interface
• Only gives key name, not precise shifted character

Control, alt, shift keys sent as separate events
• As are certain special “action keys”

Processing key events requires a Script node
• Covered in Chapter 9, Event Utilities and Scripting

Chapter 8 - User Interactivity 46

46

KeySensor events 1
• Sends isActive true event when selected
• Sends isActive false event when deselected
• keyPress, keyRelease provide SFString value for the

specific key pressed (or released)
• Usually upper-case or primary key symbol only

• shiftKey, altKey, controlKey are SFBool binary values
indicating whether keys were pressed or released

KeySensor also has enabled field
• but not description since display is challenging

KeySensor includes description and enabled fields.

Chapter 8 - User Interactivity 47

KeySensor events 2
• actionKeyPress, actionKeyRelease provide SFInt32

values when pressed or released

Table 8.15, page 243, X3D for Web Authors

Be careful not to unintentionally override default navigation behaviors for above keys.

Chapter 8 - User Interactivity 48

48

KeySensor node X3D-Edit

Figure 8.8, page 244, X3D for Web Authors

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/KeySensor-Lefty.x3d

Chapter 8 - User Interactivity 49

49

keySensor.js X3D-Edit

keySensor.js is invoked by a Script node in KeySensor-Lefty.x3d in order to process
user key presses and output viewpoint binding events.

Script nodes are covered in Chapter 9, Event Utilities and Scripting.

Chapter 8 - User Interactivity 50

50

KeySensor tooltips

http://www.web3d.org/x3d/content/X3dTooltips.html#KeySensor

Chapter 8 - User Interactivity 51

51

StringSensor node, events

StringSensor provides a string-based interface to
the user's keyboard
• Each character key press is collected until <Enter>

key is returned, completing finalText string
• Intermediate string results (including deletions) also

available as user proceeds in enteredText string
• deletionAllowed is boolean field that enables

<Backspace>, <Delete> keys

StringSensor has isActive events, enabled field
• but not description since display is challenging

If displaying entered text, you may want to provide a colored Box background behind it
in order to improve contrast and readability without clutter from the surrounding scene.

Chapter 8 - User Interactivity 52

52

StringSensor node X3D-Edit

Figure 8.9, page 246, X3D for Web Authors

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/StringSensor.x3d

Chapter 8 - User Interactivity 53

53

converter.js X3D-Edit

converter.js is invoked by a Script node in StringSensor.x3d in order to use the
following type-conversion function:

function SFString_MFString (value) {

 MFString_out = new MFString (value);

}

This script is necessary to convert the SFString output of the StringSensor node
enteredText field into the MFString input needed for the Text node string field. In other
words, a single SFString is converted into a MFString array with a single element.

Script nodes are covered in Chapter 9, Event Utilities and Scripting.

Chapter 8 - User Interactivity 54

54

StringSensor tooltips

http://www.web3d.org/x3d/content/X3dTooltips.html#StringSensor

Chapter 8 - User Interactivity 55

55

Example: user-interactivity sensor nodes

UserInteractivitySensorNodes.x3d
• Select (click and hold) TouchSensor Cone to

alternate Background nodes
• Select and drag PlaneSensor -- Box on the screen
• Select and drag to rotate CylinderSensor -- Cylinder
• Select and drag to spin SphereSensor -- Sphere

Keyboard inputs are also activated
• KeySensor indicates keyPress
• StringSensor shows finalText once <Enter> pressed
• Console shows enteredText (includes deletes if any)

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/UserInteractivitySensorNodes.x3d

Chapter 8 - User Interactivity 56

56

SensorNodeExamples.x3d
snapshot

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/UserInteractivitySensorNodes.x3d

The top screen is the initial view. Click and hold to select the Cone TouchSensor that
binds the light-blue Background. Releasing unbinds that Background, restoring the
original.

PlaneSensor, CylinderSensor and SphereSensor can each be selected and dragged.
Their output values (SFVec3f, SFRotation, SFRotation) have ROUTE connections to
either translate or rotate the respective parent Transform node.

Default KeySensor output text is a ? question mark. Note that the key output shows
only a capital-letter character (or the primary character) for the key being pressed.

Default StringSensor output text is 'Press keys then <Enter>' - be patient since the
finalText field doesn't send an output string until the <Enter> key is pressed.

The console shows the enteredText, as it is typed key by key, including <Backspace>
or <Delete> effects (if any).
 enteredText=H enteredText=Hello Strin

 enteredText=He enteredText=Hello String

 enteredText=Hel enteredText=Hello StringS

 enteredText=Hell enteredText=Hello StringSe

 enteredText=Hello enteredText=Hello StringSen

 enteredText=Hello enteredText=Hello StringSens

 enteredText=Hello S enteredText=Hello StringSenso

 enteredText=Hello St enteredText=Hello StringSensor

 enteredText=Hello Str enteredText=Hello StringSensor!

 enteredText=Hello Stri enteredText=Hello StringSensor!

Chapter 8 - User Interactivity 57

57

SensorNodeExamples.x3d X3D-Edit 1

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/UserInteractivitySensorNodes.x3d

Chapter 8 - User Interactivity 58

58

SensorNodeExamples.x3d X3D-Edit 2

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/UserInteractivitySensorNodes.x3d

Chapter 8 - User Interactivity 59

59

SensorNodeExamples.x3d X3D-Edit 3

Note that a Script node is needed to convert the SFString outputs of the KeySensor
and TouchSensor into MFString inputs for the appropriate Text node string field.

This is one of the few remaining cases in X3D where a Script node is needed for data
type conversion between a sensor output node and another X3D target node.

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter08-UserInteractivity/UserInteractivitySensorNodes.x3d

Chapter 8 - User Interactivity 60

60

Chapter Summary

back to Table of Contents

Chapter 8 - User Interactivity 61

61

Summary: User Interactivity

User interactivity is initiated via sensor nodes,
which capture user inputs and are hooked up
to provide appropriate responses
• TouchSensor senses pointing device (mouse, etc.)
• PlaneSensor is a drag sensor that converts x-y

pointer motion to move objects in a plane
• CylinderSensor and SphereSensor are drag sensors

that convert x-y pointer motion to rotate objects
• KeySensor and StringSensor capture keyboard input

Interactivity sensors initiate animation chains

Dragging is the movement of a selected object using the pointing device, a capability
provided by the drag sensors.

Animation chains are covered in Chapter 7, Event Animation and Interpolation.

Chapter 8 - User Interactivity 62

62

Suggested exercises

Illustrate and annotate ROUTE connections in an
animation scene graph (documenting 10 steps)
• Print out one of these scenes in landscape mode,

either using the X3dToXhtml.xslt stylesheet version
or Netbeans-provided 'Save as HTML' option.

• Then draw all ROUTE connections, label beginning
and end of each by name, type and accessType

• Best candidate: UserInteractivitySensorNodes.x3d

Draw animation chain diagrams to document
behaviors in your own example scenes
• Add use-case summaries about user intent

Someday we hope to automate the production of such diagrams.

X3dToXhtml.xslt is available via X3D-Edit menu X3D, Conversions

Chapter 8 - User Interactivity 63

63

Additional Resources

back to Table of Contents

Chapter 8 - User Interactivity 64

64

ArbitraryAxisCylinderSensor Prototype

ArbitraryAxisCylinderSensor is a prototype that
simplifies the design pattern of aligning a
CylinderSensor about an arbitrary axis
• https://savage.nps.edu/Savage/Tools/Animation
• Prototype definition:

ArbitraryAxisCylinderSensorPrototype.x3d
• ProtoInstance examples:

ArbitraryAxisCylinderSensorExamples.x3d

Fields match those of CylinderSensor, plus:
• shiftRotationAxis, center, children, plus

show/scale/color/transparency of
CylinderSensorShape

Prototypes are an extensibility mechanism to define new X3D nodes using existing X3D
nodes. They are covered in Chapter 14.

Warning: ArbitraryAxisCylinderSensor operates on its children, NOT on its peers. This
variation is necessary in order to accomplish the desired Transform rotation to a new
orientation axis. Example use:

https://savage.nps.edu/Savage/Tools/Animation/ArbitraryAxisCylinderSensorExamples.x3d

 <ExternProtoDeclare name=”ArbitraryAxisCylinderSensor”>

<!-- copy field definitions here -->

 </ExternProtoDeclare>

 <ProtoInstance name='ArbitraryAxisCylinderSensor' containerField='children'>

<!-- rotate rotate CylinderSensor yAxis to xAxis -->

<fieldValue name='shiftRotationAxis' value='0 0 1 -1.5707963'/>

<fieldValue name='children'>

<Shape>

<Cylinder/>

<Appearance>

<Material diffuseColor='1 0 0'/>

</Appearance>

</Shape>

</fieldValue>

 </ProtoInstance>

Chapter 8 - User Interactivity 65

65

ArbitraryAxisCylinderSensor

These screen snapshots show the original unmanipulated scene above, and multiple
user-rotated objects with different axis angles in the scene below.

https://savage.nps.edu/Savage/Tools/Animation/ArbitraryAxisCylinderSensorExamples.x3d

Chapter 8 - User Interactivity 66

66

DoubleClickTouchSensor

DoubleClickTouchSensor is a prototype
alternative to TouchSensor that detects when a
user has rapidly selected an object twice
• https://savage.nps.edu/Savage/Tools/Animation
• Prototype definition:

DoubleClickTouchSensorPrototype.x3d
• ProtoInstance examples:

DoubleClickTouchSensorExample.x3d

Fields match those of TouchSensor, plus:
• maxDelayInterval allowed for distinguishing

between single and double click, in seconds

Prototypes are an extensibility mechanism to define new X3D nodes using existing
X3D nodes. They are covered in Chapter 14.

Example use:

https://savage.nps.edu/Savage/Tools/Animation/DoubleClickTouchSensorExample.x3d

 <ExternProtoDeclare name=”DoubleClickTouchSensor”>

<!-- copy field definitions here -->

 </ExternProtoDeclare>

 <ProtoInstance name='DoubleClickTouchSensor' DEF='TouchSensorActive'>

 <fieldValue name='description'

 value='double click to initiate time delay and color change'/>

 <fieldValue name='maxDelayInterval' value='0.5/>

 </ProtoInstance>

Chapter 8 - User Interactivity 67

67

TimeDelaySensor Prototype

TimeDelaySensor is an alternative to TimeSensor
that includes a time delay before firing
• https://savage.nps.edu/Savage/Tools/Animation
• Prototype definition:

TimeDelaySensorPrototype.x3d
• ProtoInstance examples:

TimeDelaySensorExample.x3d

Fields match those of TimeSensor, plus:
• delayInterval, delayCompleteTime

Prototypes are an extensibility mechanism to define new X3D nodes using existing
X3D nodes. They are covered in Chapter 14.

Example use:

https://savage.nps.edu/Savage/Tools/Animation/TimeDelaySensorExample.x3d

 <ExternProtoDeclare name='TimeDelaySensor'

 url='"TimeDelaySensorPrototype.x3d#TimeDelaySensor"

"https://savage.nps.edu/Savage/Tools/Animation/TimeDelaySensorPrototype.x3d #TimeDelaySensor"

"TimeDelaySensorPrototype.wrl#TimeDelaySensor"

"https://savage.nps.edu/Savage/Tools/Animation/TimeDelaySensorPrototype.wrl#TimeDelaySensor"'>

 <field accessType='inputOutput' name='startTime' type='SFTime'/>

 <field accessType='inputOutput' name='enabled' type='SFBool'/>

 <field accessType='inputOutput' name='delayInterval' type='SFTime'/>

 <field accessType='outputOnly' name='delayCompleteTime' type='SFTime'/>

 <field accessType='initializeOnly' name='traceEnabled' type='SFBool'/>

 </ExternProtoDeclare>

 <ProtoInstance DEF='DelayTimer' name='TimeDelaySensor'>

 <fieldValue name='delayInterval' value='3'/>

 <fieldValue name='traceEnabled' value='true'/>

 </ProtoInstance>

Chapter 8 - User Interactivity 68

68

TimeSensorEaseInEaseOut Prototype

TimeSensorEaseInEaseOut is an alternative to
TimeSensor with a slower ramp at beginning
and end of a cycle, thus smoothing transitions
• https://savage.nps.edu/Savage/Tools/Animation
• Prototype definition:

TimeSensorEaseInEaseOutPrototype.x3d
• ProtoInstance examples:

TimeSensorEaseInEaseOutExample.x3d

Fields match those of TimeSensor
• Slight linear slowdown for first and last 10%
• Slight linear speedup in between

Prototypes are an extensibility mechanism to define new X3D nodes using existing
X3D nodes. They are covered in Chapter 14.

Example use:

https://savage.nps.edu/Savage/Tools/Animation/TimeSensorEaseInEaseOutExample.x3d

 <ExternProtoDeclare name='TimeSensorEaseInEaseOut'>

<!-- need to copy url and field definitions here -->

 </ExternProtoDeclare>

 <ProtoInstance name='TimeSensorEaseInEaseOut' DEF='EasyClock'>

 <fieldValue name='cycleInterval' value='3'/>

 </ProtoInstance>

Chapter 8 - User Interactivity 69

TimeSensorEaseInEaseOut snapshots

Snapshots showing progression of a TimeSensorEaseInEaseOut animation.

Each box starts and stops at the same locations and also at the same times. The
white TimeSensor box travels at a constant speed throughout.

The TimeSensorEaseInEaseOut orange box starts more slowly at the start, speeds up
to pass the white box, then slows to finish identically. This can be a more graceful way
to perform some animations.

https://savage.nps.edu/Savage/Tools/Animation/TimeSensorEaseInEaseOutExample.x3d

Chapter 8 - User Interactivity 70

70

References

back to Table of Contents

Chapter 8 - User Interactivity 71

71

References 1

X3D: Extensible 3D Graphics for Web Authors
by Don Brutzman and Leonard Daly, Morgan
Kaufmann Publishers, April 2007, 468 pages.
• Chapter 8, User Interactivity
• http://x3dGraphics.com
• http://x3dgraphics.com/examples/X3dForWebAuthors

X3D Resources
• http://www.web3d.org/x3d/content/examples/X3dResources.html

Chapter 8 - User Interactivity 72

72

References 2

X3D-Edit Authoring Tool
• https://savage.nps.edu/X3D-Edit

X3D Scene Authoring Hints
• http://x3dgraphics.com/examples/X3dSceneAuthoringHints.html

X3D Graphics Specification
• http://www.web3d.org/x3d/specifications
• Also available as help pages within X3D-Edit

Chapter 8 - User Interactivity 73

73

References 3

VRML 2.0 Sourcebook by Andrea L. Ames,
David R. Nadeau, and John L. Moreland,
John Wiley & Sons, 1996.
• http://www.wiley.com/legacy/compbooks/vrml2sbk/cover/cover.htm
• http://www.web3d.org/x3d/content/examples/Vrml2.0Sourcebook

• Chapter 9 - Sensing Viewer

3D User Interfaces with Java3D by Jon
Barilleaux, Manning Publications, 2001.
• http://www.manning.com/barrilleaux
• http://java.sun.com/developer/Books/Java3D

Chapter 8 - User Interactivity 74

74

References 4

3D User Interfaces: Theory and Practice by
Doug A. Bowman, Ernst Kruijff, Joseph J.
LaViola Jr. and Ivan Poupyrev,
Addison Wesley, 2005.
• http://www.3dui.org
• http://people.cs.vt.edu/~bowman/3dui.org/3D UI Book.html

Understanding Virtual Reality: Interface,
Application and Design by Bill Sherman
and Alan Craig, Morgan Kaufmann, 2003.

• http://www.immersence.com/publications/2003/2003-WSherman.html

Chapter 8 - User Interactivity 75

75

Conferences 1

ACM SIGGRAPH
• Special Interest Group on Graphics is the leading

professional society for computer graphics and
interactive techniques

• http://www.siggraph.org

ACM SIGCHI
• Special Interest Group on Computer-Human

Interaction, brings together people working on the
design, evaluation, implementation, and study of
interactive computing systems for human use

• http://www.sigchi.org

Chapter 8 - User Interactivity 76

Conferences 2

IEEE Symposium on 3D User Interfaces (3DUI)
• http://conferences.computer.org/3dui

IEEE Symposium on Virtual Reality (VR)
• http://conferences.computer.org/vr

Web3D Symposium
• In cooperation with Web3D Consortium,

ACM SIGGRAPH and Eurographics
• http://www.web3d2009.org

Chapter 12 - Environment Sensors and Sound 77

77

Don Brutzman

brutzman@nps.edu

http://faculty.nps.edu/brutzman

Code USW/Br, Naval Postgraduate School
Monterey California 93943-5000 USA

1.831.656.2149 voice

Contact

Chapter05-AppearanceMaterialTextures 78

CGEMS, SIGGRAPH, Eurographics

The Computer Graphics Educational Materials
Source(CGEMS) site is designed for educators
• to provide a source of refereed high-quality content
• as a service to the Computer Graphics community
• freely available, directly prepared for classroom use
• http://cgems.inesc.pt

X3D for Web Authors recognized by CGEMS! ☺
• Book materials: X3D-Edit tool, examples, slidesets
• Received jury award for Best Submission 2008

CGEMS supported by SIGGRAPH, Eurographics

From the CGEMS home page:

• http://cgems.inesc.pt

Welcome to CGEMS - Computer Graphics Educational Materials Source. The
CGEMS site is designed for educators to provide a source of refereed high-
quality content as a service to the Computer Graphics community as a whole.
Materials herein are freely available and directly prepared for your classroom.

List of all published modules:

• http://cgems.inesc.pt/authors/ListModules.aspx

CGEMS Editorial Policy:

• http://cgems.inesc.pt/EditorialPolicy.htm

Chapter 8 - User Interactivity 79

Creative Commons open-source license
http://creativecommons.org/licenses/by-nc-sa/3.0

Attribution-Noncommercial-Share Alike 3.0 Unported

You are free:

 * to Share — to copy, distribute and transmit the work

 * to Remix — to adapt the work

Under the following conditions:

 * Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).

 Attribute this work: What does "Attribute this work" mean?

 The page you came from contained embedded licensing metadata, including how
the creator wishes to be attributed for re-use. You can use the HTML here to cite the
work. Doing so will also include metadata on your page so that others can find the
original work as well.

 * Noncommercial. You may not use this work for commercial purposes.

 * Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

 * For any reuse or distribution, you must make clear to others the license terms of
this work. The best way to do this is with a link to this web page.

 * Any of the above conditions can be waived if you get permission from the
copyright holder.

 * Nothing in this license impairs or restricts the author's moral rights.

Chapter 8 - User Interactivity 80

Open-source license
for X3D-Edit software and X3D example scenes

http://www.web3d.org/x3d/content/examples/license.html

Copyright (c) 1995-2013 held by the author(s). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the names of the Naval Postgraduate School (NPS) Modeling Virtual Environments and Simulation
(MOVES) Institute nor the names of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

License available at

 http://www.web3d.org/x3d/content/examples/license.txt

 http://www.web3d.org/x3d/content/examples/license.html

Good references on open source:

Andrew M. St. Laurent, Understanding Open Source and Free
Software Licensing, O'Reilly Publishing, Sebastopol California,
August 2004. http://oreilly.com/catalog/9780596005818/index.html

Herz, J. C., Mark Lucas, John Scott, Open Technology
Development: Roadmap Plan, Deputy Under Secretary of Defense
for Advanced Systems and Concepts, Washington DC, April 2006.
http://handle.dtic.mil/100.2/ADA450769

	Extensible 3D (X3D) Graphics Requirements for Video on the Web
	Topics
	Chapter Overview
	Slide 4
	Slide 5
	Concepts
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	X3D Nodes and Examples
	TouchSensor
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	PlaneSensor
	Slide 31
	Slide 32
	Slide 33
	CylinderSensor
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	SphereSensor
	Slide 42
	Slide 43
	Slide 44
	KeySensor
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	StringSensor
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Chapter Summary
	Slide 61
	Suggested Exercises
	Additional Resources
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	References
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Extensible 3D (X3D) Graphics Requirements for Video on the Web
	Topics
	Chapter Overview
	Slide 4
	Slide 5
	Concepts
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	X3D Nodes and Examples
	TouchSensor
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	PlaneSensor
	Slide 31
	Slide 32
	Slide 33
	CylinderSensor
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	SphereSensor
	Slide 42
	Slide 43
	Slide 44
	KeySensor
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	StringSensor
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Chapter Summary
	Slide 61
	Suggested Exercises
	Additional Resources
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	References
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

