
X3D Graphics for Web Authors

Chapter 14

 Creating Prototype Nodes

There are more things in heaven and earth, Horatio,
than are dreamt of in your philosophy.

William Shakespeare, Hamlet Act I Scene V

http://en.wikipedia.org/wiki/Concordance_(publishing)
http://en.wikipedia.org/wiki/Hamlet
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/IBM_1130
http://en.wikipedia.org/wiki/Punch_cards
http://upload.wikimedia.org/wikipedia/commons/2/2a/Disk_Cartridge_2315_type.jb.jpg

Contents

Chapter Overview and Concepts

Functional Descriptions and Examples

Chapter Summary

Suggested Exercises

References

Chapter Overview

Overview: Prototypes

Concepts
• Motivation and Functional Summary

Functional Descriptions and Examples
• ProtoDeclare, ProtoInterface, ProtoBody and

field declarations
• IS / connect linking of field interfaces to internals
• ExternProtoDeclare and field signatures
• ProtoInstance, containerField, fieldValue initializations
• Advanced examples: design and re-use

file:///C:/My%20Documents/X3D/X3dForWebAuthors/x3dGraphics.com/slidesets/X3dForWebAuthors/%23field%20declarations
file:///C:/My%20Documents/X3D/X3dForWebAuthors/x3dGraphics.com/slidesets/X3dForWebAuthors/%23field%20signatures
file:///C:/My%20Documents/X3D/X3dForWebAuthors/x3dGraphics.com/slidesets/X3dForWebAuthors/%23field%20declarations
file:///C:/My%20Documents/X3D/X3dForWebAuthors/x3dGraphics.com/slidesets/X3dForWebAuthors/%23field%20signatures

Concepts

back to Table of Contents

Prototype motivation: extensibility

The X in X3D stands for Extensible: we have
engineered the X3D standard for future growth
• Supporting innovation by individual authors, rather

than waiting for future versions of the specification

Other extensibility mechanisms available:
• Inline node allows one scene to pull in other

scenes, but without modification or customization
• Script node allows creation of arbitrary functionality

that receives (and responds to) routed events

Prototypes create new full-fledged X3D nodes
• With field definitions, render capability, etc.

Comparison with Inline node

Inline is easier to create and use
• Simply loads and inserts another X3D scene

Inline nodes are less flexible
• Cannot be customized when imported since there is

no override mechanism for internal field values
• Events can be passed into, out of Inline scene at

run time by using predefined IMPORT, EXPORT
statements, for exposed internal nodes inside Inline

Prototypes are preferred if initialization values
are needed, routing also works unambiguously

Prototype functional summary

A Prototype creates a new full-fledged X3D node
• With field definitions, render capability, etc.

X3D prototypes provide a way for X3D authors to
create new node definitions
• ProtoInstance allows repeated reuse of a new node
• Fields can be exposed an parameterized, allowing

customization (unlike Inline which is fixed content)

Prototypes can be used within the scene where
they are defined, or used externally
• ExternProtoDeclare gives reference to declaration

Declaration versus instances

Prototype declarations can be thought of as
defining a cookie-cutter for a new node
• ProtoDeclare constructs the definition
• Definition does not yet create an actual new node

Prototype instances are the actual copies of the
new node which gets displayed
• Just as cookie cutter is used to create new cookies

ProtoDeclare
is a

template

ProtoInstance
copies actually

exist and render

http://www.coxandcox.co.uk/index.php?main_page=product_info&cPath=9&products_id=51
http://en.wikipedia.org/wiki/Cookie_cutter

Summary of xml element structure

ProtoDeclare
• ProtoInterface

• field

• ProtoBody
• Initial node
• Additional nodes
• IS/connect links

ExternProtoDeclare
• field

ProtoInstance
• fieldValue

Defines prototype
• Hold field definitions

• Defines each field interface

• Hold nodes, scene subgraph
• First node defines type, use
• Initial siblings not rendered
• Link interfaces to internal fields

Retrieve external declaration
• List of fields without values

Actual copy of prototype node
• Override default interface

values

Potential power

Prototypes are a powerful technique for
extending the capabilities of X3D

Few computing languages provide authors with
the capability to extend the core vocabulary of
the language itself

In one sense, an scene author defining a
prototype for a new node in a scene can be
thought to have similar power as the X3D
specification team which defines new nodes for
everyone to use in X3D

Strong typing of nodes

Each prototype declaration must contain at least
one node in the prototype body
• First node is primary, defining type for prototype
• ProtoInstances can only appear where that primary

node might be allowed to appear
• If primary node contains children, together they

must define a valid scene subgraph

Subsequent sibling nodes can follow first node
• But are not rendered, nor do they affect node type

Thus prototype instances remain strongly typed
• Any errors are discoverable before run time

Syntax alert: contrast .x3d .x3dv

Syntax for prototype definition and usage is
significantly different when comparing the
XML (.x3d) and ClassicVRML (.x3dv) encodings

Functional correspondence remains identical
• Declaration, field definitions, instance creation, etc.

Book compares both forms of syntax in detail

Functional Descriptions
and Examples

back to Table of Contents

ProtoDeclare

A prototype declaration includes two constructs:
prototype interface and prototype body

<ProtoDeclare name='MyNewBlueMaterial'>

 <ProtoInterface>
 <field name='concentration' accessType='inputOutput' type='SFInt32'
 Value='0.75' appinfo='how blue is my new Material, range 0..1'/>
 </ProtoInterface>

 <ProtoBody>
 <!-- First node in body determines node type of prototype-->
 <Material/>
 <!-- Subsequent nodes do not render, but must be valid X3D subgraph -->
 <Script DEF='CalculateNewBlueValueFromConcentration'/>
 </ProtoBody>

</ProtoDeclare>

Naming considerations 1

Good naming is important for prototypes, fields
• Helps authors understand their intent and then

utilize them correctly
• Naming-convention guidelines found in

X3D Scene Authoring Hints

Only one declaration is allowed for each
individual prototype node
• Cannot have conflicting same-name definitions from

ProtoDeclare and/or ExternProtoDeclare
• Name collisions (i.e. “overloading”) not allowed

http://www.web3d.org/x3d/content/examples/X3dSceneAuthoringHints.html#NamingConventions
http://www.web3d.org/x3d/content/examples/X3dSceneAuthoringHints.html#NamingConventions
http://www.web3d.org/x3d/content/examples/X3dSceneAuthoringHints.html#NamingConventions

Naming considerations 2

Good test of a prototype name (or field name) is
to use it in a sentence, to see if it makes sense
• “a MaterialModulator node mimics a Material node

and modulate fields as an animation effect”
• Awkward names are revealed by awkward sentences
• Descriptions are helpful when added as appinfo

Good names provide clarity when thinking about,
modifying, and debugging a scene

Best name is when no one asks what it means!
• Alternatively, questions imply need to improve

http://www.web3d.org/x3d/content/examples/X3dSceneAuthoringHints.html#NamingConventions

Naming conventions, excerpted
CamelCaseNaming: capitalize each word, never use

abbreviations, strive for clarity, be brief but complete
startWithLowerCaseLetter when defining field names (i.e.

attributes) for Prototypes, Scripts
Ensure consistent capitalization throughout
Use the underscore character ("_") to indicate subscripts

on mathematical variables. Otherwise avoid use of
underscores since they look like whitespace when part
of a URL address

Avoid use of hyphens ("-") since these are erroneously
turned into subtraction operators when converted into
class or variable names

http://www.web3d.org/x3d/content/examples/X3dSceneAuthoringHints.html#NamingConventions
http://www.web3d.org/x3d/content/examples/X3dSceneAuthoringHints.html#NamingConventions
http://www.web3d.org/x3d/content/examples/X3dSceneAuthoringHints.html#NamingConventions

ProtoInterface and field declarations

<ProtoInterface> is section of <ProtoDeclare> that
holds <field> definitions
• Which are the interface for the prototype
• Zero or more <field> definitions allowed
• <ProtoInterface> omitted if no <field> definitions

Same as <field> definitions for Script node
• Defines name, type, accessType, and initial value
• SFNode, MFNode initializations are contained elements
• initializeOnly, inputOutput fields must have initial value
• inputOnly, outputOnly fields have no initial value

X3D field types, default initialization values 1

X3D field types, default initialization values 2

ProtoBody

First node in ProtoBody is required and critical,
defining the node type
• This node is how a ProtoInstance will appear to

scene graph

Additional nodes are allowed, but not rendered
• This is how prototypes provide extensibility while

maintaining strong node typing
• X3D-Edit will provide warning about this, unless

author inserts a comment beforehand

No object-oriented “inheritance” but...
• first node in body can be a nested ProtoInstance

http://en.wikipedia.org/wiki/Caveat_emptor

Simple example: UniversalMedia excerpt 1

The Universal Media Materials archive provides a
number of example materials
• Available as prototypes, or cut + paste
• Built in, selectable within X3D-Edit Material editor
• No ProtoInterface/fields needed, just ProtoBody

<ProtoDeclare name='ArtDeco00'>
 <ProtoBody>
 <Material ambientIntensity='0.25'

diffuseColor='0.282435 0.085159 0.134462'
emissiveColor='0.0 0.0 0.0' shininess='0.127273'
specularColor='0.276305 0.11431 0.139857' transparency='0.0'/>

 </ProtoBody>
</ProtoDeclare>

Simple example: UniversalMedia excerpt 2

Alternatively, ExternProto retrieval:

<Shape>
 <Appearance>
 <ProtoInstance containerField='material' name='ArtDeco00'/>
 </Appearance>
 <Sphere DEF='Ball' radius='0.5'/>
</Shape>

 <ExternProtoDeclare name='ArtDeco00'
url='"ArtDecoPrototypesExcerpt.x3d#ArtDeco00"

"http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-
Prototypes/ArtDecoPrototypesExcerpt.x3d#ArtDeco00"
"http://www.web3d.org/x3d/content/examples/Basic/UniversalMediaMaterials/
ArtDecoPrototypes.x3d#ArtDeco00"'/>

Invocation is identical in either case:

containerField tells parent node the
node type of the contained ProtoInstance.

ProtoDeclare, ProtoInstance X3D-Edit

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/ArtDecoPrototypesExcerpt.x3d

ProtoDeclare editor X3D-Edit

Selecting ProtoDeclare, ProtoInterface or
ProtoBody launches the ProtoDeclare interface:

Four prototype tooltips

http://www.web3d.org/x3d/content/X3dTooltips.html#ProtoBody
http://www.web3d.org/x3d/content/X3dTooltips.html#ProtoDeclare
http://www.web3d.org/x3d/content/X3dTooltips.html#ProtoInstance
http://www.web3d.org/x3d/content/X3dTooltips.html#ProtoInterface

field tooltips

http://www.web3d.org/x3d/content/X3dTooltips.html#field

<IS> and <connect>

<IS><connect> definitions link field interfaces
to internal nodes within the prototype body

These as direct links between outward-facing
prototype interface fields and internal fields
• Any initialization or routed input value for the

ProtoInterface field definition goes directly into
matching internal IS/connect fields

• Any change to a connected internal field is routed
out of the prototype, if accessType='outputOnly' or
accessType='inputOutput'

Multiple connections are allowed for each node
and for field, both for inputs and for outputs

<connect>

IS / connect constructs link field interfaces to
internal nodes within the prototype declaration
• Each named field IS connected to a prototype field
• Only legal to use within ProtoBody declarations

Each <connect> definition provides connection
between a given field within local parent node
and a corresponding <field> definition in the
ProtoInterface
• Each name must match field, interface exactly
• Identical (eponymous) names often best for clarity
• Must also match type and accessType exactly

<IS> and <connect> example

Prototype interface fields linked to internal fields
 <ProtoDeclare appinfo='mimic a Material node and modulate fields as an animation effect'
 name='MaterialModulator'>
 <ProtoInterface>
 <field accessType='inputOutput' name='enabled' type='SFBool' value='true'/>
 <field accessType='inputOutput' name='diffuseColor' type='SFColor' value='0.8 0.8 0.8'/>
 <field accessType='inputOutput' name='emissiveColor' type='SFColor' value='0 0 0'/>
 <field accessType='inputOutput' name='specularColor' type='SFColor' value='0 0 0'/>
 <field accessType='inputOutput' name='transparency' type='SFFloat' value='0.0'/>
 <field accessType='inputOutput' name='shininess' type='SFFloat' value='0.2'/>
 <field accessType='inputOutput' name='ambientIntensity' type='SFFloat' value='0.2'/>
 </ProtoInterface>
 <ProtoBody>
 <Material DEF='MaterialNode'>
 <IS>
 <connect nodeField='diffuseColor' protoField='diffuseColor'/>
 <connect nodeField='emissiveColor' protoField='emissiveColor'/>
 <connect nodeField='specularColor' protoField='specularColor'/>
 <connect nodeField='transparency' protoField='transparency'/>
 <connect nodeField='shininess' protoField='shininess'/>
 <connect nodeField='ambientIntensity' protoField='ambientIntensity'/>
 </IS>
 </Material> <!-- etc. -->

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/MaterialModulator.x3d

IS / connect in X3D-Edit

<IS> editor is simple

<connect> editor prompts
author to connect proper
type and accessType
between parent-node
and prototype fields

IS / connect tooltips

http://www.web3d.org/x3d/content/X3dTooltips.html#IS
http://www.web3d.org/x3d/content/X3dTooltips.html#connect

Connecting an embedded Script 1

A common design goal: create a Prototype that is
modified version of specific node

Example:
• Prototype name='NewMaterial'
• ProtoInterface holds definitions for all original fields

plus possibly some additional fields
• ProtoBody initial node is essential: e.g. Material,

fully linked by IS/connect definitions for each field
• Next (nonrendered) node is modifying Script, also

holding IS/connect field definitions plus connection
to Material (via ROUTE or DEF/USE in a field)

Connecting an embedded Script 2

X3D-Edit can insert Script if fields are defined
• May eventually add support for full design pattern

 <ProtoBody>
 ...
 <Script DEF='MaterialModulatorScript'>
 <field accessType='inputOutput' name='enabled' type='SFBool'/>
 <field accessType='inputOutput' name='diffuseColor' type='SFColor'/>
 <field accessType='inputOutput' name='emissiveColor' type='SFColor'/>
 <field accessType='inputOutput' name='specularColor' type='SFColor'/>
 <field accessType='inputOutput' name='transparency' type='SFFloat'/>
 <field accessType='inputOutput' name='shininess' type='SFFloat'/>
 <field accessType='inputOutput' name='ambientIntensity' type='SFFloat'/>
 <IS>
 <connect nodeField='enabled' protoField='enabled'/>
 <connect nodeField='diffuseColor' protoField='diffuseColor'/>
 <connect nodeField='emissiveColor' protoField='emissiveColor'/>
 <connect nodeField='specularColor' protoField='specularColor'/>
 <connect nodeField='transparency' protoField='transparency'/>
 <connect nodeField='shininess' protoField='shininess'/>
 <connect nodeField='ambientIntensity' protoField='ambientIntensity'/>
 </IS>
 </Script>
 </ProtoBody>

 autogenerated X3D

ExternProtoDeclare

ExternProtoDeclare references an individual
ProtoDeclare definition in an external scene
• Allows single “master” definition of a prototype,

avoids versionitis from cut/paste redistributions
• Multiple prototype nodes require multiple

ExternProtoDeclare statements

Includes <field> definitions matching interface
signature of the original prototype
• Minus initial values, so that conflicts are avoided
• Allows X3D browser to “understand” new nodes

and create proper scene graph when loading

ExternProtoDeclare X3D-Edit

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/ArtDecoExamplesExcerpt.x3d

ExternProtoDeclare editor X3D-Edit

ExternProtoDeclare editor for multiple url values
• Note #ProtoName appended to each filename
• Can edit, locally load, or launch each address
• Can sort url list (relative, .x3d before online, .wrl)

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/ArtDecoExamplesExcerpt.x3d

appinfo, documentation attributes

The appinfo and documentation attributes
accompany ProtoDeclare, ExternProtoDeclare
and field definitions
• appinfo holds a simple summary or tooltip
• documentation holds a url to further information

These match identical constructs in XML Schema
• Allowing tools to further support authoring, editing
• Allowing authors to properly document new nodes

These are important to use, and help long-term
extensibility of your work and X3D itself

ProtoInstance

Finally you can make copies of your new node:
create Prototype instances using ProtoInstance
• Must be preceded by either ProtoDeclare or

ExternProtoDeclare with same name
• Otherwise a run-time error results for end user

Nevertheless simple to invoke and instantiate:
<ProtoInstance name='ArtDeco00'/>

Can override default initialization values for fields
• This is how a prototype is customized upon creation
• <fieldValue name='someField' value='someValue'/>
• Can also initialize child nodes, if any

ProtoInstance X3D-Edit 1
ArtDecoExamplesExcerpt.x3d

ArtDecoExamplesExcerpt.x3d

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/ArtDecoExamplesExcerpt.x3d

containerField considerations

containerField is how the field name for a node
is provided, relative to the node's parent
• Usually not needed since default matches most

common case: containerField ='children'
• ClassicVRML syntax is different, more verbose
• As ever, functionality is identical

 <!-- Rendered geometry follows prototype declaration -->
 <Shape>
 <Sphere/>
 <Appearance>
 <ProtoInstance containerField='material'
 name='MaterialModulator'>
 <fieldValue name='enabled' value='true'/>
 <fieldValue name='diffuseColor' value='0.5 0.1 0.1'/>
 </ProtoInstance>
 </Appearance>
 </Shape>

Rendered geometry follows prototype declaration
Shape {
 geometry Sphere {
 }
 appearance Appearance {
 material MaterialModulator {
 enabled TRUE
 diffuseColor 0.5 0.1 0.1
 }
 }
}

fieldValue initializations 1

fieldValue name must match; initialization values
must match the type specified in declaration
• Otherwise a run-time error results for end user
• Take special care to check correctness, avoid errors

To initialize simple types: use value parameter

<ProtoInstance name='MaterialModulator'
 containerField='material'>
 <fieldValue name='enabled' value='true'/>
 <fieldValue name='diffuseColor' value='0.5 0.1 0.1'/>
</ProtoInstance>

fieldValue initializations 2

To initialize SFNode or MFNode types, use
contained nodes within the fieldValue element:

As might be expected, fieldValue initializations
are only allowed for fields with accessType of
initializeOnly or inputOutput

<ProtoInstance name='SomethingNew'>
 <fieldValue name='newSFNodeField'>
 <!-- initialization node goes here -->
 </fieldValue>
</ProtoInstance>

ProtoInstance X3D-Edit 2
MaterialModulator.x3d

MaterialModulator.x3d part 1

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/MaterialModulator.x3d

ProtoInstance, fieldValue X3D-Edit
MaterialModulator.x3d

MaterialModulator.x3d part 2

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/MaterialModulator.x3d

ProtoInstance tooltips

http://www.web3d.org/x3d/content/X3dTooltips.html#ProtoInstance
http://www.web3d.org/x3d/content/X3dTooltips.html#fieldValue

Advanced Examples

back to Table of Contents

Detailed example: ViewFrustrum

ViewFrustum is a helpful visualization prototype
• Prototypes simplify creation of new X3D nodes

Shows near and far clipping planes
that truncate the viewable area
• Depends on Viewpoint and

NavigationInfo parameters

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/ViewFrustrumExample.x3d

ViewFrustrum prototype, example
Good practice: make two

separate files to simplify
ExternProtoDeclare reuse

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/ViewFrustrumPrototype.x3d
http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/ViewFrustrumExample.x3d

Prototype features of interest

Highlighted ProtoDeclare, ExternProtoDeclare,
ProtoInstance and Script show:
• Using initialize() method to setup geometry nodes
• Usage of IS/connect for direct node inspection
• Usage of event-passing via ROUTE when changing

Extrusion, which doesn't support direct modification
• Matching type and accessType, toString() function
• External script code, accessing node fields
• Duplicate url addresses, local and remote
• Browser.println statements, silencable by trace field
• Internal var declarations, Javascript Math library

ViewFrustrum ProtoDeclare 1
field definitions

Coordinate points
for outline,
need initialization

Extrusion for frustum
polygons,
need initialization

Small Sphere shows
Viewpoint position

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/ViewFrustrumPrototype.x3d

ViewFrustrum ProtoDeclare 2

IS/connect links
match field definitions

Output fields for
ROUTE links

Match
ProtoInterface
field definitions

ROUTE
links

User selects Text message
to launch example scene

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/ViewFrustrumPrototype.x3d

ViewFrustrum script X3D-Edit

Examine
Viewpoint

Examine
NavigationInfo

Compute
Extrusion
frustum

Compute
Coordinate
points for
outline

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/ViewFrustrumScript.js

ExternProtoDeclare, ProtoInstance
examples

field definitions,
no initializations

fieldValue initializations
override default values

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/ViewFrustrumExample.x3d

Additional Prototype Examples

Numerous prototypes and examples are available
in the Savage archive, especially
• https://savage.nps.edu/Savage/Tools/Animation

Arbitrary Axis Cylinder Sensor, Color Sequencer,
Double Click Touch Sensor, Flying Text, Hidden
Viewpoint, Material Choice, Material Toggle, Push
Button, Relative Proximity Sensor, Slider Float,
Slider Integer, Time Delay Sensor, Viewpoint
Sequencer, Waypoint Interpolator

• https://savage.nps.edu/Savage/Tools/Authoring
Animated Viewpoint Recorder, Single Type
Conversion, View Position Orientation

https://savage.nps.edu/Savage/Tools/Animation
https://savage.nps.edu/Savage/Tools/Authoring
https://savage.nps.edu/Savage/Tools/Animation
https://savage.nps.edu/Savage/Tools/Authoring
https://savage.nps.edu/svn/nps/Savage

Chapter Summary

back to Table of Contents

Chapter Summary

Concepts
• Motivation and Functional Summary

Functional Descriptions and Examples
• ProtoDeclare, ProtoInterface, ProtoBody and

field declarations
• IS / connect linking of field interfaces to internals
• ExternProtoDeclare and field signatures
• ProtoInstance, containerField, fieldValue initializations
• Advanced examples: design and re-use

file:///C:/My%20Documents/X3D/X3dForWebAuthors/x3dGraphics.com/slidesets/X3dForWebAuthors/%23field%20declarations
file:///C:/My%20Documents/X3D/X3dForWebAuthors/x3dGraphics.com/slidesets/X3dForWebAuthors/%23field%20signatures
file:///C:/My%20Documents/X3D/X3dForWebAuthors/x3dGraphics.com/slidesets/X3dForWebAuthors/%23field%20declarations
file:///C:/My%20Documents/X3D/X3dForWebAuthors/x3dGraphics.com/slidesets/X3dForWebAuthors/%23field%20signatures

Suggested exercises

Add a given external prototype declaration and
instance to improve an already-existing scene

Write three prototypes of increasing complexity:
• No ProtoInterface, no field definitions
• One or more field definitions, no Script
• Multiple field definitions, multiple IS/connect, Script

Design a multiple fan-in fan-out prototype by
emulating an existing X3D node while adding
new functionality
• Example: MaterialModulate

References

back to Table of Contents

References 1

X3D: Extensible 3D Graphics for Web Authors
by Don Brutzman and Leonard Daly, Morgan
Kaufmann Publishers, April 2007, 468 pages.
• Chapter 14, Creating Prototype Nodes
• http://x3dGraphics.com
• http://x3dgraphics.com/examples/X3dForWebAuthors

X3D Resources
• http://www.web3d.org/x3d/content/examples/X3dResources.html

http://x3dGraphics.com/
http://x3dgraphics.com/examples/X3dForWebAuthors
http://www.web3d.org/x3d/content/examples/X3dResources.html
http://x3dGraphics.com/
http://x3dgraphics.com/examples/X3dForWebAuthors
http://www.web3d.org/x3d/content/examples/X3dResources.html

References 2

X3D-Edit Authoring Tool
• https://savage.nps.edu/X3D-Edit

X3D Scene Authoring Hints
• http://x3dgraphics.com/examples/X3dSceneAuthoringHints.html

(especially those for Inline and Prototypes)

X3D Graphics Specification
• http://www.web3d.org/x3d/specifications
• Also available as help pages within X3D-Edit

https://savage.nps.edu/X3D-Edit
http://x3dgraphics.com/examples/X3dSceneAuthoringHints.html
http://www.web3d.org/x3d/content/examples/X3dSceneAuthoringHints.html#InlinesPrototypes
http://www.web3d.org/x3d/specifications
https://savage.nps.edu/X3D-Edit
http://x3dgraphics.com/examples/X3dSceneAuthoringHints.html
http://www.web3d.org/x3d/content/examples/X3dSceneAuthoringHints.html#InlinesPrototypes
http://www.web3d.org/x3d/specifications
http://www.web3d.org/x3d/content/examples/X3dSceneAuthoringHints.html#InlinesPrototypes

References 3

VRML 2.0 Sourcebook by Andrea L. Ames,
David R. Nadeau, and John L. Moreland,
John Wiley & Sons, 1996.
• http://www.wiley.com/legacy/compbooks/vrml2sbk/cover/cover.htm
• http://www.web3d.org/x3d/content/examples/Vrml2.0Sourcebook

• Chapter 31 - Prototypes

http://www.wiley.com/legacy/compbooks/vrml2sbk/cover/cover.htm
http://www.web3d.org/x3d/content/examples/Vrml2.0Sourcebook
http://www.wiley.com/legacy/compbooks/vrml2sbk/cover/cover.htm
http://www.web3d.org/x3d/content/examples/Vrml2.0Sourcebook

Don Brutzman

brutzman@nps.edu

http://faculty.nps.edu/brutzman

Code USW/Br, Naval Postgraduate School
Monterey California 93943-5000 USA

1.831.656.2149 voice

Contact

mailto:brutzman@nps.edu
http://faculty.nps.edu/brutzman
mailto:brutzman@nps.edu
http://faculty.nps.edu/brutzman

CGEMS, SIGGRAPH, Eurographics

The Computer Graphics Educational Materials
Source(CGEMS) site is designed for educators
• to provide a source of refereed high-quality content
• as a service to the Computer Graphics community
• freely available, directly prepared for classroom use
• http://cgems.inesc.pt

X3D for Web Authors recognized by CGEMS! ☺
• Book materials: X3D-Edit tool, examples, slidesets
• Received jury award for Best Submission 2008

CGEMS supported by SIGGRAPH, Eurographics

http://cgems.inesc.pt/
http://cgems.inesc.pt/
http://www.siggraph.org/
http://www.eg.org/
http://cgems.inesc.pt/
http://cgems.inesc.pt/
http://www.siggraph.org/
http://www.eg.org/
http://cgems.inesc.pt/
http://cgems.inesc.pt/authors/ListModules.aspx
http://cgems.inesc.pt/EditorialPolicy.htm

Creative Commons open-source license
http://creativecommons.org/licenses/by-nc-sa/3.0

http://creativecommons.org/licenses/by-nc-sa/3.0
http://creativecommons.org/licenses/by-nc-sa/3.0

Open-source license
for X3D-Edit software and X3D example scenes

http://www.web3d.org/x3d/content/examples/license.html

Copyright (c) 1995-2013 held by the author(s). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the names of the Naval Postgraduate School (NPS) Modeling Virtual Environments and Simulation
(MOVES) Institute nor the names of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

http://www.web3d.org/x3d/content/examples/license.html
http://www.web3d.org/x3d/content/examples/license.html
http://www.web3d.org/x3d/content/examples/license.txt
http://www.web3d.org/x3d/content/examples/license.html
http://oreilly.com/catalog/9780596005818/index.html
http://handle.dtic.mil/100.2/ADA450769

Chapter 14 - Creating Prototype Nodes 1

X3D Graphics for Web Authors

Chapter 14

 Creating Prototype Nodes

There are more things in heaven and earth, Horatio,
than are dreamt of in your philosophy.

William Shakespeare, Hamlet Act I Scene V

 Here is the story of my high-school senior English project about building a
concordance of Shakespeare's Hamlet. Building a concordance was a relatively new
concepts in 1974: first creating a full index of words in a document, then counting the
occurrence of each word, and afterwards using that information to analyze the writing
style of the author. At that time, this technique was being applied to try to determine
whether the same author had written all of the plays attributed to Shakespeare.

 In this case, my program was written in Fortran and run on an IBM 1130. It took
several weeks to type in the entire play onto punch cards (with help from a pretty
classmate). Typing mistakes usually meant retyping the entire card; this was before
time sharing and personal accounts with disk space. Because the dataset was
considered quite large, we were only able to test the concordance-creation program in
small batches. Columbia High School's data processing department provided an
empty hard disk (which was about as big as a garbage-can lid) to store the sorting
data, then let us use the computer over the weekend... We started the job late Friday
afternoon, reading in several thousand cards (i.e. lines of prose, one line per 80-
character card) to disk and then starting the counting, sorting and cross-referencing
routines. Output went to the line printer.

 The job ran all weekend... At 7 am Monday morning I arrived early, excited and full
of anticipation. Sure enough the lab was hot and the computer console was running
steadily, with all of the memory-bit lights flashing on and off. There on the chain-drive
line printer was page after page of concordance entries, word by word, listing word
frequency and line references. That was the good news. However, checking the
pages revealed that the program output had only produced words starting with letter
“A” up to words somewhere in the middle of letter “C”... Gee whiz, there sure was a
lot of alphabet left! We shut down the program and reopened the lab. Later that day
in Shakespeare class, the teacher clapped and laughed, as did we all. This was an
interesting lesson in the limits of brute-force programming, memory and computation.

Chapter 14 - Creating Prototype Nodes 2

Contents

Chapter Overview and Concepts

Functional Descriptions and Examples

Chapter Summary

Suggested Exercises

References

Chapter 14 - Creating Prototype Nodes 3

Chapter Overview

Chapter 14 - Creating Prototype Nodes 4

Overview: Prototypes

Concepts
• Motivation and Functional Summary

Functional Descriptions and Examples
• ProtoDeclare, ProtoInterface, ProtoBody and

field declarations
• IS / connect linking of field interfaces to internals
• ExternProtoDeclare and field signatures
• ProtoInstance, containerField, fieldValue initializations
• Advanced examples: design and re-use

Chapter 14 - Creating Prototype Nodes 5

Concepts

back to Table of Contents

Chapter 14 - Creating Prototype Nodes 6

Prototype motivation: extensibility

The X in X3D stands for Extensible: we have
engineered the X3D standard for future growth
• Supporting innovation by individual authors, rather

than waiting for future versions of the specification

Other extensibility mechanisms available:
• Inline node allows one scene to pull in other

scenes, but without modification or customization
• Script node allows creation of arbitrary functionality

that receives (and responds to) routed events

Prototypes create new full-fledged X3D nodes
• With field definitions, render capability, etc.

Editorial note. Regarding capitalization of the word “Extensible,” the Web3D
Consortium follows the example of the Extensible Markup Language (XML) rather
than some less-grammatical capitalization like eXtensible.

Chapter 14 - Creating Prototype Nodes 7

Comparison with Inline node

Inline is easier to create and use
• Simply loads and inserts another X3D scene

Inline nodes are less flexible
• Cannot be customized when imported since there is

no override mechanism for internal field values
• Events can be passed into, out of Inline scene at

run time by using predefined IMPORT, EXPORT
statements, for exposed internal nodes inside Inline

Prototypes are preferred if initialization values
are needed, routing also works unambiguously

Inline nodes are easier to use, prototypes are a little harder to create but more
powerful. Your mileage may vary (YMMV).

Often a good development technique is to test out an approach by simply creating,
copying and pasting a scene subgraph a few times until the desired structure and field
definitions are clear. Then encapsulating the functionality in a single ProtoDeclare can
be simpler. Upon creating the prototype declaration, the example subgraphs are
replaced by ProtoInstance nodes with appropriate fieldValue override values..

Chapter 14 - Creating Prototype Nodes 8

Prototype functional summary

A Prototype creates a new full-fledged X3D node
• With field definitions, render capability, etc.

X3D prototypes provide a way for X3D authors to
create new node definitions
• ProtoInstance allows repeated reuse of a new node
• Fields can be exposed an parameterized, allowing

customization (unlike Inline which is fixed content)

Prototypes can be used within the scene where
they are defined, or used externally
• ExternProtoDeclare gives reference to declaration

Chapter 14 - Creating Prototype Nodes 9

Declaration versus instances

Prototype declarations can be thought of as
defining a cookie-cutter for a new node
• ProtoDeclare constructs the definition
• Definition does not yet create an actual new node

Prototype instances are the actual copies of the
new node which gets displayed
• Just as cookie cutter is used to create new cookies

ProtoDeclare
is a

template

ProtoInstance
copies actually

exist and render

Image: Jigsaw Cookie Cutter, Cox and Cox

“Little ones will love helping out in the kitchen with this metal jigsaw piece cutter.
Especially as they're allowed to play with their food! It provides endless fun for kids
and is popular with adults, too. Imagine the effect of pieces running down the centre
of a party table, or individual jigsaw piece biscuits being decorated with different
children's names.”
http://www.coxandcox.co.uk/index.php?main_page=product_info&cPath=9&products_id=51

From Wikipedia, the free encyclopedia:
“A cookie cutter is a tool to cut out cookie dough in a particular shape. They are
often used for seasonal occasions when well-known decorative shapes are desired,
or for large batches of cookies where simplicity and uniformity are required.”

In object-oriented parlance:

• ProtoDeclare corresponds to a class definition

• ProtoInstance corresponds to an object instance

Chapter 14 - Creating Prototype Nodes 10

Summary of xml element structure

ProtoDeclare
• ProtoInterface

• field

• ProtoBody
• Initial node
• Additional nodes
• IS/connect links

ExternProtoDeclare
• field

ProtoInstance
• fieldValue

Defines prototype
• Hold field definitions

• Defines each field interface

• Hold nodes, scene subgraph
• First node defines type, use
• Initial siblings not rendered
• Link interfaces to internal fields

Retrieve external declaration
• List of fields without values

Actual copy of prototype node
• Override default interface

values

Chapter 14 - Creating Prototype Nodes 11

Potential power

Prototypes are a powerful technique for
extending the capabilities of X3D

Few computing languages provide authors with
the capability to extend the core vocabulary of
the language itself

In one sense, an scene author defining a
prototype for a new node in a scene can be
thought to have similar power as the X3D
specification team which defines new nodes for
everyone to use in X3D

Chapter 14 - Creating Prototype Nodes 12

Strong typing of nodes

Each prototype declaration must contain at least
one node in the prototype body
• First node is primary, defining type for prototype
• ProtoInstances can only appear where that primary

node might be allowed to appear
• If primary node contains children, together they

must define a valid scene subgraph

Subsequent sibling nodes can follow first node
• But are not rendered, nor do they affect node type

Thus prototype instances remain strongly typed
• Any errors are discoverable before run time

This strong typing is important because it ensures that any addition of prototypes into
a valid X3D scene remains a valid X3D scene.

This also prevents contradictory errors, such as a Prototype representing a modified
Material node appearing someplace other than within a Shape node.

Chapter 14 - Creating Prototype Nodes 13

Syntax alert: contrast .x3d .x3dv

Syntax for prototype definition and usage is
significantly different when comparing the
XML (.x3d) and ClassicVRML (.x3dv) encodings

Functional correspondence remains identical
• Declaration, field definitions, instance creation, etc.

Book compares both forms of syntax in detail

Because the X3D syntax is more explicit and detailed, it is usually easier to follow.

ClassicVRML and VRML97 syntax are identical for prototypes.

Chapter 14 - Creating Prototype Nodes 14

Functional Descriptions
and Examples

back to Table of Contents

Chapter 14 - Creating Prototype Nodes 15

ProtoDeclare

A prototype declaration includes two constructs:
prototype interface and prototype body

<ProtoDeclare name='MyNewBlueMaterial'>

 <ProtoInterface>
 <field name='concentration' accessType='inputOutput' type='SFInt32'
 Value='0.75' appinfo='how blue is my new Material, range 0..1'/>
 </ProtoInterface>

 <ProtoBody>
 <!-- First node in body determines node type of prototype-->
 <Material/>
 <!-- Subsequent nodes do not render, but must be valid X3D subgraph -->
 <Script DEF='CalculateNewBlueValueFromConcentration'/>
 </ProtoBody>

</ProtoDeclare>

Corresponding ClassicVRML construct: PROTO, followed by name, as shown in
Table 14.2, pp. 386-387.

Chapter 14 - Creating Prototype Nodes 16

Naming considerations 1

Good naming is important for prototypes, fields
• Helps authors understand their intent and then

utilize them correctly
• Naming-convention guidelines found in

X3D Scene Authoring Hints

Only one declaration is allowed for each
individual prototype node
• Cannot have conflicting same-name definitions from

ProtoDeclare and/or ExternProtoDeclare
• Name collisions (i.e. “overloading”) not allowed

Scene Authoring Hints are provided in X3D-Edit Help system and are online at
http://www.web3d.org/x3d/content/examples/X3dSceneAuthoringHints.html#NamingConventions

Chapter 14 - Creating Prototype Nodes 17

Naming considerations 2

Good test of a prototype name (or field name) is
to use it in a sentence, to see if it makes sense
• “a MaterialModulator node mimics a Material node

and modulate fields as an animation effect”
• Awkward names are revealed by awkward sentences
• Descriptions are helpful when added as appinfo

Good names provide clarity when thinking about,
modifying, and debugging a scene

Best name is when no one asks what it means!
• Alternatively, questions imply need to improve

Scene Authoring Hints are provided in X3D-Edit Help system and are online at
http://www.web3d.org/x3d/content/examples/X3dSceneAuthoringHints.html#NamingConventions

appinfo is a descriptive attribute that authors can define for field and prototype declarations. It is
defined similarly to XML Schema appinfo.

Acknowledgement: Jeff Weekleycame up with our (ironic) metric about how to tell if a name works.
Thanks Jeff!

Chapter 14 - Creating Prototype Nodes 18

Naming conventions, excerpted
CamelCaseNaming: capitalize each word, never use

abbreviations, strive for clarity, be brief but complete
startWithLowerCaseLetter when defining field names (i.e.

attributes) for Prototypes, Scripts
Ensure consistent capitalization throughout
Use the underscore character ("_") to indicate subscripts

on mathematical variables. Otherwise avoid use of
underscores since they look like whitespace when part
of a URL address

Avoid use of hyphens ("-") since these are erroneously
turned into subtraction operators when converted into
class or variable names

Scene Authoring Hints are provided in X3D-Edit Help system and are online at
http://www.web3d.org/x3d/content/examples/X3dSceneAuthoringHints.html#NamingConventions

Chapter 14 - Creating Prototype Nodes 19

ProtoInterface and field declarations

<ProtoInterface> is section of <ProtoDeclare> that
holds <field> definitions
• Which are the interface for the prototype
• Zero or more <field> definitions allowed
• <ProtoInterface> omitted if no <field> definitions

Same as <field> definitions for Script node
• Defines name, type, accessType, and initial value
• SFNode, MFNode initializations are contained elements
• initializeOnly, inputOutput fields must have initial value
• inputOnly, outputOnly fields have no initial value

Corresponding ClassicVRML construct: [square brackets around field definitions]
as shown in Table 14.2, pp. 386-387.

Chapter 14 - Creating Prototype Nodes 20

X3D field types, default initialization values 1

Table 14.3, page 388, X3D Field Types and Default Values

Chapter 14 - Creating Prototype Nodes 21

X3D field types, default initialization values 2

Table 14.3, page 388, X3D Field Types and Default Values

Chapter 14 - Creating Prototype Nodes 22

ProtoBody

First node in ProtoBody is required and critical,
defining the node type
• This node is how a ProtoInstance will appear to

scene graph

Additional nodes are allowed, but not rendered
• This is how prototypes provide extensibility while

maintaining strong node typing
• X3D-Edit will provide warning about this, unless

author inserts a comment beforehand

No object-oriented “inheritance” but...
• first node in body can be a nested ProtoInstance

Corresponding ClassicVRML construct: { squiggly brackets around node declarations }
as shown in Table 14.2, pp. 386-387.

Nested prototypes are interesting but a little bit risky... they are well defined and
unambiguous according to the specification, but in practice, X3D players have had
trouble implementing them correctly and consistently. So caveat emptor, “your
mileage may vary” if you use this construct.

Chapter 14 - Creating Prototype Nodes 23

Simple example: UniversalMedia excerpt 1

The Universal Media Materials archive provides a
number of example materials
• Available as prototypes, or cut + paste
• Built in, selectable within X3D-Edit Material editor
• No ProtoInterface/fields needed, just ProtoBody

<ProtoDeclare name='ArtDeco00'>
 <ProtoBody>
 <Material ambientIntensity='0.25'

diffuseColor='0.282435 0.085159 0.134462'
emissiveColor='0.0 0.0 0.0' shininess='0.127273'
specularColor='0.276305 0.11431 0.139857' transparency='0.0'/>

 </ProtoBody>
</ProtoDeclare>

Chapter 14 - Creating Prototype Nodes 24

Simple example: UniversalMedia excerpt 2

Alternatively, ExternProto retrieval:

<Shape>
 <Appearance>
 <ProtoInstance containerField='material' name='ArtDeco00'/>
 </Appearance>
 <Sphere DEF='Ball' radius='0.5'/>
</Shape>

 <ExternProtoDeclare name='ArtDeco00'
url='"ArtDecoPrototypesExcerpt.x3d#ArtDeco00"

"http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-
Prototypes/ArtDecoPrototypesExcerpt.x3d#ArtDeco00"
"http://www.web3d.org/x3d/content/examples/Basic/UniversalMediaMaterials/
ArtDecoPrototypes.x3d#ArtDeco00"'/>

Invocation is identical in either case:

containerField tells parent node the
node type of the contained ProtoInstance.

Note that containerField='material' is essential here to let the Shape know the node
type of ArtDeco00. Otherwise the default containerField='children' is used by the
browser, which is illegal inside a Shape node and would fail at run time.

Chapter 14 - Creating Prototype Nodes 25

ProtoDeclare, ProtoInstance X3D-Edit

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/ArtDecoPrototypesExcerpt.x3d

Chapter 14 - Creating Prototype Nodes 26

ProtoDeclare editor X3D-Edit

Selecting ProtoDeclare, ProtoInterface or
ProtoBody launches the ProtoDeclare interface:

This example is very simple: there is no ProtoInterface and no field definitions.

ProtoInterface and ProtoBody are container elements only, with no attributes or
independent functionality. Therefore there are no editor panes for these elements.

The ProtoInterface panel is minimalist, simply describing rules for use.

Chapter 14 - Creating Prototype Nodes 27

Four prototype tooltips

X3D Tooltips for ProtoBody, ProtoDeclare, ProtoInstance, ProtoInterface

http://www.web3d.org/x3d/content/X3dTooltips.html#ProtoBody

http://www.web3d.org/x3d/content/X3dTooltips.html#ProtoDeclare

http://www.web3d.org/x3d/content/X3dTooltips.html#ProtoInstance

http://www.web3d.org/x3d/content/X3dTooltips.html#ProtoInterface

Chapter 14 - Creating Prototype Nodes 28

field tooltips

X3D tooltips for field

http://www.web3d.org/x3d/content/X3dTooltips.html#field

Chapter 14 - Creating Prototype Nodes 29

<IS> and <connect>

<IS><connect> definitions link field interfaces
to internal nodes within the prototype body

These as direct links between outward-facing
prototype interface fields and internal fields
• Any initialization or routed input value for the

ProtoInterface field definition goes directly into
matching internal IS/connect fields

• Any change to a connected internal field is routed
out of the prototype, if accessType='outputOnly' or
accessType='inputOutput'

Multiple connections are allowed for each node
and for field, both for inputs and for outputs

Corresponding ClassicVRML construct: after field definition in prototype body, the
keyword IS is appended, followed by name of corresponding field in proto interface,
as shown in Table 14.4, pp. 389-391.

Chapter 14 - Creating Prototype Nodes 30

<connect>

IS / connect constructs link field interfaces to
internal nodes within the prototype declaration
• Each named field IS connected to a prototype field
• Only legal to use within ProtoBody declarations

Each <connect> definition provides connection
between a given field within local parent node
and a corresponding <field> definition in the
ProtoInterface
• Each name must match field, interface exactly
• Identical (eponymous) names often best for clarity
• Must also match type and accessType exactly

Corresponding ClassicVRML construct: after field definition in prototype body, the
keyword IS is appended, followed by name of corresponding field in proto interface

Chapter 14 - Creating Prototype Nodes 31

<IS> and <connect> example

Prototype interface fields linked to internal fields
 <ProtoDeclare appinfo='mimic a Material node and modulate fields as an animation effect'
 name='MaterialModulator'>
 <ProtoInterface>
 <field accessType='inputOutput' name='enabled' type='SFBool' value='true'/>
 <field accessType='inputOutput' name='diffuseColor' type='SFColor' value='0.8 0.8 0.8'/>
 <field accessType='inputOutput' name='emissiveColor' type='SFColor' value='0 0 0'/>
 <field accessType='inputOutput' name='specularColor' type='SFColor' value='0 0 0'/>
 <field accessType='inputOutput' name='transparency' type='SFFloat' value='0.0'/>
 <field accessType='inputOutput' name='shininess' type='SFFloat' value='0.2'/>
 <field accessType='inputOutput' name='ambientIntensity' type='SFFloat' value='0.2'/>
 </ProtoInterface>
 <ProtoBody>
 <Material DEF='MaterialNode'>
 <IS>
 <connect nodeField='diffuseColor' protoField='diffuseColor'/>
 <connect nodeField='emissiveColor' protoField='emissiveColor'/>
 <connect nodeField='specularColor' protoField='specularColor'/>
 <connect nodeField='transparency' protoField='transparency'/>
 <connect nodeField='shininess' protoField='shininess'/>
 <connect nodeField='ambientIntensity' protoField='ambientIntensity'/>
 </IS>
 </Material> <!-- etc. -->

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/MaterialModulator.x3d

Note that you can <connect> multiple fields in a node to multiple protoFields, all at one time. Now we
see why the <IS> element is used: to keep multiple <connect> definitions together.

Question: hey, where is the enabled field hook up? Hmm, can't be hooked up to the Material since that
node doesn't an enabled field of it's own. Must be connected somewhere else...

Chapter 14 - Creating Prototype Nodes 32

IS / connect in X3D-Edit

<IS> editor is simple

<connect> editor prompts
author to connect proper
type and accessType
between parent-node
and prototype fields

Chapter 14 - Creating Prototype Nodes 33

IS / connect tooltips

X3D Tooltips for IS, connect

http://www.web3d.org/x3d/content/X3dTooltips.html#IS

http://www.web3d.org/x3d/content/X3dTooltips.html#connect

Chapter 14 - Creating Prototype Nodes 34

Connecting an embedded Script 1

A common design goal: create a Prototype that is
modified version of specific node

Example:
• Prototype name='NewMaterial'
• ProtoInterface holds definitions for all original fields

plus possibly some additional fields
• ProtoBody initial node is essential: e.g. Material,

fully linked by IS/connect definitions for each field
• Next (nonrendered) node is modifying Script, also

holding IS/connect field definitions plus connection
to Material (via ROUTE or DEF/USE in a field)

X3D-Edit feature: the ProtoDeclare editor offers an option to create a fully connected
internal Script node by appropriately copying the prototype interface fields and then
producing a Script containing corresponding field declarations and IS/connect
definitions. When no appinfo is already provided, default values can be inserted.

Chapter 14 - Creating Prototype Nodes 35

Connecting an embedded Script 2

X3D-Edit can insert Script if fields are defined
• May eventually add support for full design pattern

 <ProtoBody>
 ...
 <Script DEF='MaterialModulatorScript'>
 <field accessType='inputOutput' name='enabled' type='SFBool'/>
 <field accessType='inputOutput' name='diffuseColor' type='SFColor'/>
 <field accessType='inputOutput' name='emissiveColor' type='SFColor'/>
 <field accessType='inputOutput' name='specularColor' type='SFColor'/>
 <field accessType='inputOutput' name='transparency' type='SFFloat'/>
 <field accessType='inputOutput' name='shininess' type='SFFloat'/>
 <field accessType='inputOutput' name='ambientIntensity' type='SFFloat'/>
 <IS>
 <connect nodeField='enabled' protoField='enabled'/>
 <connect nodeField='diffuseColor' protoField='diffuseColor'/>
 <connect nodeField='emissiveColor' protoField='emissiveColor'/>
 <connect nodeField='specularColor' protoField='specularColor'/>
 <connect nodeField='transparency' protoField='transparency'/>
 <connect nodeField='shininess' protoField='shininess'/>
 <connect nodeField='ambientIntensity' protoField='ambientIntensity'/>
 </IS>
 </Script>
 </ProtoBody>

 autogenerated X3D

Chapter 14 - Creating Prototype Nodes 36

ExternProtoDeclare

ExternProtoDeclare references an individual
ProtoDeclare definition in an external scene
• Allows single “master” definition of a prototype,

avoids versionitis from cut/paste redistributions
• Multiple prototype nodes require multiple

ExternProtoDeclare statements

Includes <field> definitions matching interface
signature of the original prototype
• Minus initial values, so that conflicts are avoided
• Allows X3D browser to “understand” new nodes

and create proper scene graph when loading

Corresponding ClassicVRML construct: EXTERNPROTO, followed by name, as
shown in Table 14.6, pp. 395-396.

Some or all ExternProtoDeclare field definitions can be omitted if they are not
initialized and not used by any of the corresponding ProtoInstance nodes.

Chapter 14 - Creating Prototype Nodes 37

ExternProtoDeclare X3D-Edit

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/ArtDecoExamplesExcerpt.x3d

Chapter 14 - Creating Prototype Nodes 38

ExternProtoDeclare editor X3D-Edit

ExternProtoDeclare editor for multiple url values
• Note #ProtoName appended to each filename
• Can edit, locally load, or launch each address
• Can sort url list (relative, .x3d before online, .wrl)

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/ArtDecoExamplesExcerpt.x3d

Note that the appinfo field is typically a short description, suitable as a tool tip.

Note that the documentation field is typically a single url value linking to a help page.

A check button lets you confirm whether the ExternProtoDeclare definitions match the
parent ProtoDeclare in a separate file. If there is a mismatch, the incorrect data fields
are highlighted in read. The second button will then replace and fix any mismatches.

Loading the scene holding the referenced ProtoDeclare is sometimes convenient.

Author-assist editing feature allows you to append a corresponding new ProtoInstance
that implements this ExternProtoDeclare.

TODO: add … launch button for documentation url

Chapter 14 - Creating Prototype Nodes 39

appinfo, documentation attributes

The appinfo and documentation attributes
accompany ProtoDeclare, ExternProtoDeclare
and field definitions
• appinfo holds a simple summary or tooltip
• documentation holds a url to further information

These match identical constructs in XML Schema
• Allowing tools to further support authoring, editing
• Allowing authors to properly document new nodes

These are important to use, and help long-term
extensibility of your work and X3D itself

TODO under consideration: define X3D specification syntax for adding appinfo and
documentation definitions to the ClassicVRML encoding.

Chapter 14 - Creating Prototype Nodes 40

ProtoInstance

Finally you can make copies of your new node:
create Prototype instances using ProtoInstance
• Must be preceded by either ProtoDeclare or

ExternProtoDeclare with same name
• Otherwise a run-time error results for end user

Nevertheless simple to invoke and instantiate:
<ProtoInstance name='ArtDeco00'/>

Can override default initialization values for fields
• This is how a prototype is customized upon creation
• <fieldValue name='someField' value='someValue'/>
• Can also initialize child nodes, if any

Corresponding ClassicVRML construct: no keyword, simply use of the prototype
name when a node is expected, as shown in Table 14.7, page 398.

Chapter 14 - Creating Prototype Nodes 41

ProtoInstance X3D-Edit 1
ArtDecoExamplesExcerpt.x3d

ArtDecoExamplesExcerpt.x3d

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/ArtDecoExamplesExcerpt.x3d

Need ProtoInstance editor snapshot (TODO, bug 1765, fails when no fieldValue given)

Chapter 14 - Creating Prototype Nodes 42

containerField considerations

containerField is how the field name for a node
is provided, relative to the node's parent
• Usually not needed since default matches most

common case: containerField ='children'
• ClassicVRML syntax is different, more verbose
• As ever, functionality is identical

 <!-- Rendered geometry follows prototype declaration -->
 <Shape>
 <Sphere/>
 <Appearance>
 <ProtoInstance containerField='material'
 name='MaterialModulator'>
 <fieldValue name='enabled' value='true'/>
 <fieldValue name='diffuseColor' value='0.5 0.1 0.1'/>
 </ProtoInstance>
 </Appearance>
 </Shape>

Rendered geometry follows prototype declaration
Shape {
 geometry Sphere {
 }
 appearance Appearance {
 material MaterialModulator {
 enabled TRUE
 diffuseColor 0.5 0.1 0.1
 }
 }
}

There have been a number of proposals to make ProtoInstance elements into “native
node” elements,s and to replace the containerField attribute with named elements,
also called “wrapper tags.” Although these approaches have some interesting
characteristics, they also have a significant number of drawbacks when applied to
XML syntax.

The primary virtue of the ProtoInstance/containerField approach is that author-defined
prototype instances can be validated by XML. By contrast, defining new XML
elements that match the prototype names is visually appealing, but this approach
quickly leads to nonvalidatable, erroneous content. So X3D doesn't do that.

Chapter 14 - Creating Prototype Nodes 43

fieldValue initializations 1

fieldValue name must match; initialization values
must match the type specified in declaration
• Otherwise a run-time error results for end user
• Take special care to check correctness, avoid errors

To initialize simple types: use value parameter

<ProtoInstance name='MaterialModulator'
 containerField='material'>
 <fieldValue name='enabled' value='true'/>
 <fieldValue name='diffuseColor' value='0.5 0.1 0.1'/>
</ProtoInstance>

Re-using the same default initialization value is OK. Actually this is a common
debugging technique when testing various combinations of field initialization values.

Chapter 14 - Creating Prototype Nodes 44

fieldValue initializations 2

To initialize SFNode or MFNode types, use
contained nodes within the fieldValue element:

As might be expected, fieldValue initializations
are only allowed for fields with accessType of
initializeOnly or inputOutput

<ProtoInstance name='SomethingNew'>
 <fieldValue name='newSFNodeField'>
 <!-- initialization node goes here -->
 </fieldValue>
</ProtoInstance>

Re-using the same default initialization value is OK. Actually this is a common
debugging technique when testing various combinations of field initialization values.

Chapter 14 - Creating Prototype Nodes 45

ProtoInstance X3D-Edit 2
MaterialModulator.x3d

MaterialModulator.x3d part 1

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/MaterialModulator.x3d

The ProtoDeclare editing panel provides a single interface to enter, view and change
ProtoDeclare, ProtoInstance, and ProtoBody.

A separate panel for individual field editing is also provided:

Chapter 14 - Creating Prototype Nodes 46

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/MaterialModulator.x3d

Note that the editing panel shows that only two <fieldValue> initializations are being
overridden. The other <fieldValue> defaults are shown as a convenience.

The screen snapshot series in the lower right illustrate how the diffuseColor for the
MaterialModulator nodes causes the Sphere appearance to change rapidly.

A separate panel for individual <fieldValue> editing is also provided. Note that it will
list all available fields, allowing selection of the field of interest to be overridden. Here
is the same <fieldValue> editing panel shown on the slide above, but with the author
selecting the pull-down menu to choose the already-defined field of interest.

ProtoInstance, fieldValue X3D-Edit
MaterialModulator.x3d

MaterialModulator.x3d part 2

Chapter 14 - Creating Prototype Nodes 47

ProtoInstance tooltips

X3D Tooltips for ProtoInstance and fieldValue

http://www.web3d.org/x3d/content/X3dTooltips.html#ProtoInstance

http://www.web3d.org/x3d/content/X3dTooltips.html#fieldValue

Chapter 14 - Creating Prototype Nodes 48

Advanced Examples

back to Table of Contents

Chapter04-ViewingNavigation 49

Detailed example: ViewFrustrum

ViewFrustum is a helpful visualization prototype
• Prototypes simplify creation of new X3D nodes

Shows near and far clipping planes
that truncate the viewable area
• Depends on Viewpoint and

NavigationInfo parameters

Viewpoint and NavigationInfo fields are covered in Chapter 4, Viewing and Navigation.

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/ViewFrustrumExample.x3d

Chapter04-ViewingNavigation 50

ViewFrustrum prototype, example
Good practice: make two

separate files to simplify
ExternProtoDeclare reuse

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/ViewFrustrumPrototype.x3d

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/ViewFrustrumExample.x3d

Chapter04-ViewingNavigation 51

Prototype features of interest

Highlighted ProtoDeclare, ExternProtoDeclare,
ProtoInstance and Script show:
• Using initialize() method to setup geometry nodes
• Usage of IS/connect for direct node inspection
• Usage of event-passing via ROUTE when changing

Extrusion, which doesn't support direct modification
• Matching type and accessType, toString() function
• External script code, accessing node fields
• Duplicate url addresses, local and remote
• Browser.println statements, silencable by trace field
• Internal var declarations, Javascript Math library

Chapter04-ViewingNavigation 52

ViewFrustrum ProtoDeclare 1
field definitions

Coordinate points
for outline,
need initialization

Extrusion for frustum
polygons,
need initialization

Small Sphere shows
Viewpoint position

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/ViewFrustrumPrototype.x3d

Chapter04-ViewingNavigation 53

ViewFrustrum ProtoDeclare 2

IS/connect links
match field definitions

Output fields for
ROUTE links

Match
ProtoInterface
field definitions

ROUTE
links

User selects Text message
to launch example scene

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/ViewFrustrumPrototype.x3d

Chapter04-ViewingNavigation 54

ViewFrustrum script X3D-Edit

Examine
Viewpoint

Examine
NavigationInfo

Compute
Extrusion
frustum

Compute
Coordinate
points for
outline

Editing the Script as a separate file provides Netbeans javascript syntax checking, code
coloration, code completion, etc. This can catch a lot of errors.

Script header:
// Description: Perform geometric computations for ViewFrustrum prototype

// Filename: ViewFrustrumScript.js

// Author: Don Brutzman

// Identifier:

 http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/ViewFrustrumScript.js

// Created: 16 August 2008

// Revised: 17 August 2008

// Reference: ViewFrustrumPrototype.x3d

// Reference: ViewFrustrumExample.x3d

// Drawing: ViewFrustrumComputation.png

// License: ../license.html

Chapter04-ViewingNavigation 55

ExternProtoDeclare, ProtoInstance
examples

field definitions,
no initializations

fieldValue initializations
override default values

http://X3dGraphics.com/examples/X3dForWebAuthors/Chapter14-Prototypes/ViewFrustrumExample.x3d

Chapter 14 - Creating Prototype Nodes 56

Additional Prototype Examples

Numerous prototypes and examples are available
in the Savage archive, especially
• https://savage.nps.edu/Savage/Tools/Animation

Arbitrary Axis Cylinder Sensor, Color Sequencer,
Double Click Touch Sensor, Flying Text, Hidden
Viewpoint, Material Choice, Material Toggle, Push
Button, Relative Proximity Sensor, Slider Float,
Slider Integer, Time Delay Sensor, Viewpoint
Sequencer, Waypoint Interpolator

• https://savage.nps.edu/Savage/Tools/Authoring
Animated Viewpoint Recorder, Single Type
Conversion, View Position Orientation

Each of these prototypes has both __Prototypes.x3d and __Examples.x3d scenes,
showing ProtoDeclare definitions and separate ExternProtoDeclare invocations.

Looking at examples is very helpful for designing your own prototypes.

Each of these are maintained under version control and offered under an open-source
license.

https://savage.nps.edu/svn/nps/Savage

Chapter 14 - Creating Prototype Nodes 57

Chapter Summary

back to Table of Contents

Chapter 14 - Creating Prototype Nodes 58

Chapter Summary

Concepts
• Motivation and Functional Summary

Functional Descriptions and Examples
• ProtoDeclare, ProtoInterface, ProtoBody and

field declarations
• IS / connect linking of field interfaces to internals
• ExternProtoDeclare and field signatures
• ProtoInstance, containerField, fieldValue initializations
• Advanced examples: design and re-use

Chapter 14 - Creating Prototype Nodes 59

Suggested exercises

Add a given external prototype declaration and
instance to improve an already-existing scene

Write three prototypes of increasing complexity:
• No ProtoInterface, no field definitions
• One or more field definitions, no Script
• Multiple field definitions, multiple IS/connect, Script

Design a multiple fan-in fan-out prototype by
emulating an existing X3D node while adding
new functionality
• Example: MaterialModulate

Chapter 14 - Creating Prototype Nodes 60

References

back to Table of Contents

Chapter 14 - Creating Prototype Nodes 61

References 1

X3D: Extensible 3D Graphics for Web Authors
by Don Brutzman and Leonard Daly, Morgan
Kaufmann Publishers, April 2007, 468 pages.
• Chapter 14, Creating Prototype Nodes
• http://x3dGraphics.com
• http://x3dgraphics.com/examples/X3dForWebAuthors

X3D Resources
• http://www.web3d.org/x3d/content/examples/X3dResources.html

Chapter 14 - Creating Prototype Nodes 62

References 2

X3D-Edit Authoring Tool
• https://savage.nps.edu/X3D-Edit

X3D Scene Authoring Hints
• http://x3dgraphics.com/examples/X3dSceneAuthoringHints.html

(especially those for Inline and Prototypes)

X3D Graphics Specification
• http://www.web3d.org/x3d/specifications
• Also available as help pages within X3D-Edit

Prototyping Excerpts from Scene Authoring Hints
Prototype Declarations

 * Follow X3D naming conventions for node and field definitions.

 * Provide useful/safe default initialization values for each field, rather than depending on default field values
internal to the ProtoBody.

 * Include annotation tooltips for each field.

 * Avoid copying ProtoDeclare definitions into scenes, instead copy ExternProtoDeclare/ProtoInstance definitions.

 * Tooltips for ProtoDeclare, ProtoInterface and ProtoBody

 * X3D specification

External Prototype Declarations

 * Do not wrap field definitions in a ProtoInterface element since that construct is illegal.

 * For important prototypes, make a separate NewNodeExample.x3d scene that provides copyable/reusable
ExternProtoDeclare/ProtoInstance definitions corresponding to each NewNodePrototype.x3d scene. This
encourages authors to avoid copying ProtoDeclare definitions, so that a master version remains stable and
improvable.

 * Do not include initialization values in field definitions. They are illegal since the defaults in the original
ProtoDeclare field declarations take precedence.

 * Copy annotation tooltips from corresponding ProtoDeclare tooltips for each ExternProtoDeclare field.

 * ExternProtoDeclare tooltips and X3D specification

Prototype Instances

 * Explicitly include initialization values, even if they match default values, to ensure proper operation. Sometimes
a prototype can have different initialization values than expected, if it is modified elsewhere.

 * Remember to include proper containerField attribute, identifying parent-node field name for this ProtoInstance.
Default value: children. Example values: color, coord, geometry, fontStyle, proxy, sound, texture, textureTransform.

 * First debug proper ProtoInstance operation in the scene defining the original ProtoDeclare, rather than using
an ExternProtoDeclare. Why - to make sure they work first! Browser debugging can be more cryptic for externally
defined prototypes and different versions may occur in various remote url addresses, making it difficult to
determine precisely which ExternProtoDeclare is being referenced.

 * ProtoInstance tooltips and X3D specification

Chapter 14 - Creating Prototype Nodes 63

References 3

VRML 2.0 Sourcebook by Andrea L. Ames,
David R. Nadeau, and John L. Moreland,
John Wiley & Sons, 1996.
• http://www.wiley.com/legacy/compbooks/vrml2sbk/cover/cover.htm
• http://www.web3d.org/x3d/content/examples/Vrml2.0Sourcebook

• Chapter 31 - Prototypes

Chapter 12 - Environment Sensors and Sound 64

Don Brutzman

brutzman@nps.edu

http://faculty.nps.edu/brutzman

Code USW/Br, Naval Postgraduate School
Monterey California 93943-5000 USA

1.831.656.2149 voice

Contact

Chapter05-AppearanceMaterialTextures 65

CGEMS, SIGGRAPH, Eurographics

The Computer Graphics Educational Materials
Source(CGEMS) site is designed for educators
• to provide a source of refereed high-quality content
• as a service to the Computer Graphics community
• freely available, directly prepared for classroom use
• http://cgems.inesc.pt

X3D for Web Authors recognized by CGEMS! ☺
• Book materials: X3D-Edit tool, examples, slidesets
• Received jury award for Best Submission 2008

CGEMS supported by SIGGRAPH, Eurographics

From the CGEMS home page:

• http://cgems.inesc.pt

Welcome to CGEMS - Computer Graphics Educational Materials Source. The
CGEMS site is designed for educators to provide a source of refereed high-
quality content as a service to the Computer Graphics community as a whole.
Materials herein are freely available and directly prepared for your classroom.

List of all published modules:

• http://cgems.inesc.pt/authors/ListModules.aspx

CGEMS Editorial Policy:

• http://cgems.inesc.pt/EditorialPolicy.htm

Chapter 14 - Creating Prototype Nodes 66

Creative Commons open-source license
http://creativecommons.org/licenses/by-nc-sa/3.0

Attribution-Noncommercial-Share Alike 3.0 Unported

You are free:

 * to Share — to copy, distribute and transmit the work

 * to Remix — to adapt the work

Under the following conditions:

 * Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).

 Attribute this work: What does "Attribute this work" mean?

 The page you came from contained embedded licensing metadata, including how
the creator wishes to be attributed for re-use. You can use the HTML here to cite the
work. Doing so will also include metadata on your page so that others can find the
original work as well.

 * Noncommercial. You may not use this work for commercial purposes.

 * Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

 * For any reuse or distribution, you must make clear to others the license terms of
this work. The best way to do this is with a link to this web page.

 * Any of the above conditions can be waived if you get permission from the
copyright holder.

 * Nothing in this license impairs or restricts the author's moral rights.

Chapter 14 - Creating Prototype Nodes 67

Open-source license
for X3D-Edit software and X3D example scenes

http://www.web3d.org/x3d/content/examples/license.html

Copyright (c) 1995-2013 held by the author(s). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the names of the Naval Postgraduate School (NPS) Modeling Virtual Environments and Simulation
(MOVES) Institute nor the names of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

License available at

 http://www.web3d.org/x3d/content/examples/license.txt

 http://www.web3d.org/x3d/content/examples/license.html

Good references on open source:

Andrew M. St. Laurent, Understanding Open Source and Free
Software Licensing, O'Reilly Publishing, Sebastopol California,
August 2004. http://oreilly.com/catalog/9780596005818/index.html

Herz, J. C., Mark Lucas, John Scott, Open Technology
Development: Roadmap Plan, Deputy Under Secretary of Defense
for Advanced Systems and Concepts, Washington DC, April 2006.
http://handle.dtic.mil/100.2/ADA450769

	Extensible 3D (X3D) Graphics Requirements for Video on the Web
	Topics
	Chapter Overview
	Slide 4
	Concepts
	Motivation
	Slide 7
	Prototype summary
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Functional Descriptions and Examples
	ProtoDeclare
	Slide 16
	Slide 17
	Slide 18
	ProtoInterface
	Slide 20
	Slide 21
	ProtoBody
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	IS / connect
	connect
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	ExternProtoDeclare
	Slide 37
	Slide 38
	appinfo
	ProtoInstance
	Slide 41
	containerField
	fieldValue
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Advanced Examples
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Chapter Summary
	Slide 58
	Suggested Exercises
	References
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Extensible 3D (X3D) Graphics Requirements for Video on the Web
	Topics
	Chapter Overview
	Slide 4
	Concepts
	Motivation
	Slide 7
	Prototype summary
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Functional Descriptions and Examples
	ProtoDeclare
	Slide 16
	Slide 17
	Slide 18
	ProtoInterface
	Slide 20
	Slide 21
	ProtoBody
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	IS / connect
	connect
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	ExternProtoDeclare
	Slide 37
	Slide 38
	appinfo
	ProtoInstance
	Slide 41
	containerField
	fieldValue
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Advanced Examples
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Chapter Summary
	Slide 58
	Suggested Exercises
	References
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

